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Constraints on Localization and Decomposition as Explanatory Strategies in the 

Biological Sciences 

 

Abstract. Several articles have recently appeared arguing that there really are no viable 

alternatives to mechanistic explanation in the biological sciences (Kaplan and Craver 

2011; Kaplan and Bechtel 2011). This claim is meant to hold both in principle and in 

practice. The basic claim is that any explanation of a particular feature of a biological 

system, including dynamical explanations, must ultimately be grounded in mechanistic 

explanation. There are several variations on this theme, some stronger and some weaker. 

In order to avoid equivocation and miscommunication, in section 1 we will argue that 

mechanistic explanation is defined by localization and decomposition. In section 2 we 

will argue that systems neuroscience contains explanations that violate both localization 

and decomposition on any non-trivial construal of these concepts. Therefore, in section 3 

we conclude the mechanistic model of explanation either needs to stretch to now include 

explanations wherein localization or decomposition fail, or acknowledge that there are 

counter-examples to mechanistic explanation in the biological sciences. We will also 

consider consequences and possible replies on the part of the mechanist in section 3. 

1. Introduction. While there are many different accounts of mechanistic explanation, the 

basic idea is that a phenomenon has been explained when the responsible realizing or 

underlying mechanism has been identified. In particular, the relevant parts of the 

mechanism and the operations they perform must be identified, i.e., those 

parts/operations that maintain, produce, or underlie the phenomena in question (Bechtel  

2010; Craver 2007; Machamer, Darden and Craver 2000; Kaplan and Craver 2011; 

Kaplan and Bechtel 2011). Whatever the particular account of mechanistic explanation 

on offer, it is clear that mechanistic explanation is supposed to be fundamental in the 

biological sciences, period. What is less clear is exactly what this explanatory axiom 

entails. What follows is a list of claims pertaining to dynamical and mathematical 

explanations in the biological sciences that some mechanistic thinkers assert are entailed 

by the mechanistic model: 

 

1) Dynamical and mathematical explanations in systems neuroscience must be grounded 

in or reduced to mechanistic explanations (via localization and decomposition) to be 

explanatory. 

 

2) Dynamical mechanisms are not an alternative to mechanistic explanation but a 

complement. 

 

 

3) When dynamical and mathematical models do not describe mechanisms by 

appropriately mapping elements of the latter onto the former, then they provide no real 

explanation. 

 

4) At this juncture, dynamical and mathematical models of explanation in biology not 

sufficiently grounded in mechanisms have nothing to offer but “predictivism” by way of 
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explanatory force. That is, critics of mechanistic explanation do not have a viable 

alternative research strategy or alternative conception of explanation on offer (Kaplan 

and Bechtel 2011; Kaplan and Craver 2011). 

 

The mechanists in question claim that certain defenders of dynamical and mathematical 

explanation in the biological sciences violate 1-3 and are therefore guilty of 4 (Kaplan 

and Craver 2011; Kaplan and Bechtel 2011). We first we need to get clear on exactly 

how the “dynamicist” is being portrayed. Kaplan and Craver go after the “strong 

dynamicist and functionalist”, which they characterize as follows, “In particular, we 

oppose strong dynamicist and functionalist views according to which mathematical and 

computational models can explain a phenomenon without embracing commitments about 

the causal mechanisms that produce, underlie, or maintain it” (2011, 603). The strong 

dynamicist and functionalist holds that “mechanistic explanation is no longer an 

appropriate goal for cognitive and systems neuroscience” (Ibid). And finally, “If these 

dynamicists are right, such models yield explanations in the total absence of 

commitments regarding the causal mechanisms that produce the cognitive or system 

behavior we seek to explain” (Ibid, 604). According to Kaplan and Craver then, the 

strong dynamicist abandons the mechanistic model of explanation and has nothing 

coherent or cogent to replace it with. 

 

We also reject strong dynamicism and functionalism so characterized. We will show 

however that ‘either mechanistic explanation or dynamical predictivism’ is a false 

dilemma. What we will claim is that systems biology and systems neuroscience contain 

robust dynamical and mathematical explanations of some phenomena in which the 

essential explanatory work is not be being done by localization and decomposition. More 

positively, the explanatory work in these models is being done by their graphical/network 

properties, geometric properties, or dynamical properties.  We mean this claim to be true 

both in practice and in principle. Presumably then, what separates us from the mechanists 

is that they are committed to all such “higher level” explanations ultimately being 

discharged via localization and decomposition and we are not. However, we certainly do 

not think such explanations are incompatible or mutually exclusive, we have no problem 

calling them “complementary.” Nonetheless, we will argue that graphical and dynamical 

properties for example are “non-decomposable” and non-localizable features of the 

causal and nomological structure of the “mechanisms” in question.   

 

We want to end this section with a sociological note of caution. A great deal of the 

discussion in the literature strongly suggests that what we have before us is a thinly 

veiled iteration of the ancient philosophical debate between competing ‘isms’ regarding 

the essence of mind and the essence of explanation. Take the following, “It has not 

escaped our attention that 3M [mechanistic model of explanation], should it be found 

acceptable, has dire implications for functionalist theories of cognition that are not, 

ultimately, beholden to details about implementing mechanisms. We count this as 

significant progress in thinking about the explanatory aspirations of cognitive science” 

(Ibid, 612). So in one corner we have the functionalist/dynamist with their usual 

disregard/distaste for implementing mechanisms and in the other corner the mechanist, 

who insists on filling in all the boxes and the equations with the really truly fundamental 
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“causal structure.” We think that it’s time to transcend these beleaguered battle lines. 

That is, while we reject strong dynamicism and functionalism, and while we agree that 

dynamical and mechanistic explanations inevitably go hand-in-hand, we are open to the 

possibility that there are explanations in the biological sciences that are not best 

characterized in terms of localization and decomposition. To reject this possibility out of 

hand is as extreme as thinking that implementing mechanisms are irrelevant for 

explaining cognition and behavior.  

 

When Kaplan and Craver say, “The mechanistic tradition should not be discarded lightly. 

After all, one of the grand achievements in the history of science has been to recognize 

that the diverse phenomena of our world yield to mechanistic explanation” (2011, 613), 

we agree. In fact, we don’t think the mechanistic tradition should be discarded. What we 

do think is that the mechanistic tradition understood in terms of localization and 

decomposition is in principle not the only effective explanatory strategy in the life 

sciences.   

 

2. Counter-Examples to Localization and Decomposition in Systems Neuroscience 

2.1 Defining Localization and Decomposition. Localization and decomposition are 

universally regarded as the sine qua non of mechanistic explanation. Identifying the parts 

of a mechanism and their operations necessitates decomposing the mechanism. One can 

use different methods to decompose a mechanism functionally, into component 

operations, or structurally, into component parts (Bechtel and Richardson 2010). The 

ultimate goal is to line up the parts with the operations they perform, this is known as 

localization (Ibid). Proponents of mechanistic explanation like to emphasize the way it 

differs from the DN-model of explanation, which is based on laws.  Mechanistic 

explanation is not about the derivation of phenomenon from initial conditions and 

dynamical laws, but rather explanation via localization and decomposition. 

 

Mechanistic explanation is reductionist in the sense that explanation is in terms of the 

parts of the mechanism and the operations those parts perform. Parts and operations are at 

a lower level of organization than the mechanism as a whole. Bechtel says that the most 

conservative mechanistic account is one in which a mechanism is characterized as 

generating a phenomenon via a start-to-finish sequence of qualitatively characterized 

operations performed by identifiable component parts (2011, 534). However, Bechtel, 

Craver and others have recently emphasized how liberal mechanistic accounts have 

become. For example, Bechtel has stressed that the reductionist methodology of 

localization and decomposition must be “complemented” by contextualizing 

parts/operations both within a mechanism at a given level and between the mechanism 

and its environment at a higher level. The context in question includes spatial, temporal, 

causal, hierarchical and organizational. 

 

We applaud and affirm the liberalization of mechanistic explanation.  We assume, 

though, that these mechanists consider localization and decomposition as ultimately 

essential to mechanistic explanation. That said, we wonder what they would count as 

counter-examples in principle. Fortunately, Bechtel and Richardson (2010) give us some 
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clues.  They emphasize that localization and decomposition are “heuristic” strategies that 

sometimes fail when a system fails to be decomposable or nearly decomposable (Ibid, 

13). According to them, there are two kinds of failures of decomposability or 

localizability: 1) when there are no component parts or operations that can be 

distinguished (such as a connectionist network), in which case one can only talk about 

organizational features—the best one can hope for here is functional decomposition, and 

2) when there are component parts and operations but their individual behaviors 

systematically and continuously affect one another in a non-linear fashion. In this case  

mechanisms are not sequential but have a cyclic organization rife with oscillations, 

feedback loops, or recurrent connections between components. In these instances there is 

a high-degree of interactivity among the components and the system is non-

decomposable and therefore localization will fail (Ibid, 24). In addition, if the non-

linearity affecting component operations also affects the behavior of the system as a 

whole, such that the component properties/states are dependent on a total state-

independent characterization of the system (i.e., one sufficient to determine the state and 

the dynamics of the system as a whole), then the behavior of the system can be called 

“emergent” (Ibid, 25). They emphasize that when the feedback is system wide such that 

almost all “The operations of component parts in the system will depend on the actual 

behavior and the capacities of other its components” (Ibid, 24), the following obtains. 

First, the behavior of the component parts considered within the system as a whole are 

not predicable in principle from their behavior in isolation. Second, the behavior of the 

system as a whole cannot be predicted even in principle from the separable Hamiltonians 

of the component parts (Ibid).  

 

We affirm all this and indeed others have stressed these points in illustrating the limits of 

localization and decomposition (Chemero and Silberstein 2008; Stepp, Chemero, and 

Turvey 2011). However, what puzzles us is that Bechtel and Richardson go on to say 

that, “When these conditions are met, the systemic behavior is reasonably counted as 

emergent, even though it is fully explicable mechanistically” (Ibid, 24). Here Bechtel and 

Richardson seem to be saying that even though such “emergent” behavior is not 

amenable to decomposition or localization, it is nonetheless mechanistically explicable. 

But, in exactly what sense are such systems mechanistically explicable?  We shall return 

to this in section 3, after we consider explanations in systems neuroscience.  

 

2.2 Explanation in Systems Neuroscience. Systems neuroscience is a rapidly growing 

area devoted to figuring out how the brain engages in the coordination and integration of 

distributed processes at the various length and time scales necessary for cognition and 

action. The assumption is that most of this coordination represents patterns of 

spontaneous, self-organizing, macroscopic spatiotemporal patterns which resemble the 

on-the-fly functional networks recruited during activity. This coordination often occurs at 

extremely fast time scales with short durations and rapid changes. There is a wide 

repertoire of models used to account for these self-orgainzing macroscopic patterns, such 

as oscillations, synchronization, metastability, and nonlinear dynamical coupling. Many 

explanatory models such as synergetics and neural dynamics combine several of these 

features, e.g., phase-locking among oscillations of different frequencies (Sporns 2011). 
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Despite the differences among these models, there are some important generalizations to 

be had.   First, dynamic coordination is often highly distributed and non-local. Second, 

population coding, cooperative, or collective effects prevail. Third, time and timing is 

essential in a number of ways.  Fourth, these processes exhibit both robustness and 

plasticity.  Fifth, these processes are highly context and task sensitive. Regarding the 

third point, there is a growing consensus that such integrated processes are best viewed 

not as vectors of activity or neural signals, but as dynamically evolving graphs. The 

evidence suggests that standard neural codes such as rate codes and firing frequencies are 

insufficient to explain the rapid and rapidly transitioning coordination. Rather, the 

explanation must involve “temporal codes” or “temporal binding” such as spike timing-

dependent plasticity wherein neural populations are bound by the simultaneity of firing 

and precise timing is essential.  In these cases neurons are bound into a group or 

functional network as a function of synchronization in time. The key explanatory features 

of such models then involves various time-varying properties such as: the exact timing of 

a spike, the ordering or sequencing of processing events, the rich moment-to-moment 

context of real world activity and immediate stimulus environment, an individual’s 

history such as that related to network activation and learning, etc. All of the above can 

be modeled as attractor states that constrain and bias the recruitment of brain networks 

during active tasks and behavior (Von der Malsberg et. al, 2010).  

There is now a branch of systems neuroscience devoted to the application of network 

theory to the brain. The formal tools of network theory are graph theory and dynamical 

system theory, the latter to represent network dynamics—temporally evolving dynamical 

processes unfolding in various kinds of networks.  While these techniques can be applied 

at any scale of brain activity, here we will be concerned with large-scale brain networks. 

These relatively new to neuroscience explanatory tools (i.e., simulations) are enabled by 

large data sets and increased computational power. The brain is modeled as a complex 

system: networks of (often non-linear) interacting components such as neurons, neural 

assemblies and brain regions. In these models, rather than viewing the neurons, cell 

groups or brain regions as the basic unit of explanation, it is brain multiscale networks 

and their large-scale, distributed and non-local connections or interactions that are the 

basic unit of explanation (Sporns 2011). The study of this integrative brain function and 

connectivity is primarily based in topological features (network architecture) of the 

network that are insensitive to, and multiply realizable with respect to, lower level 

neurochemical and wiring details. More specifically, a graph is a mathematical 

representation of some actual (in this case) biological many-bodied system. The nodes in 

these models represent neurons, cell populations, brain regions, etc., and the edges 

represent connections between the nodes. The edges can represent structural features such 

as synaptic pathways and other wiring diagram type features or they can represent more 

functional topological features such as graphical distance (as opposed to spatial distance).  

Here we focus on the latter wherein the interest is in mapping the interactions (edges) 

between the local neighborhood networks, i.e., global topological features—the 

architecture of the brain as a whole. While there are local networks within networks, it is 

the global connection between these that is of greatest concern in systems neuroscience. 

Graph theory is replete with a zoo of different kinds of network topologies, but one of 

perhaps greatest interest to systems neuroscience are small-world networks as various 
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regions of the brain and the brain as a whole are known to instantiate such a network. The 

key topological properties of small-world networks are: 1) a much higher clustering 

coefficient relative to random networks with equal numbers of nodes and edges and 2) 

short (topological) path length. That is, small-world networks exhibit a high degree of 

topological modularity (not to be confused with anatomical or cognitive modularity) and 

non-local or long-range connectivity. Keep in mind that there are many different types of 

small-world networks with unique properties, some with more or less topological 

modularity, higher and lower degrees (as measured by the adjacency or connection 

matrix), etc. (Sporns 2011; Von der Malsberg et. al 2010).  

The explanatory point is that such graphical simulations allow us to derive, predict and 

discover a number of important things such as mappings between structural and 

functional features of the brain, cognitive capacities, organizational features such as 

degeneracy, robustness and plasticity, structural or wiring diagram features, various 

pathologies such as schizophrenia, autism and other “connectivity disorders” when small-

world networks are disrupted, and other essential kinds of brain coordination such as 

neural synchronization, etc. In each case, the evidence is that the mapping between 

structural and topological features is at least many-one. Very different neurochemical 

mechanisms and wiring diagrams can instantiate the same networks and thus perform the 

same cognitive functions. Indeed, it is primarily the topological features of various types 

of small-world networks that explain essential organizational features of brains, as 

opposed to lower level, local purely structural features. Structural and topological 

processes occur at radically different and hard (if not impossible) to relate time-scales. 

The behavior and distribution of various nodes such as local networks are determined by 

their non-local or global connections. As Sporns puts it, “Heterogeneous, multiscale 

patterns of structural connectivity [small-world networks] shape the functional 

interactions of neural units, the spreading of activation and the appearance of synchrony 

and coherence” (2011, 259). 

Thanks to its generality and formal power, network neuroscience has also discovered 

various predictive power laws and scale-free invariances, i.e., symmetry principles at 

work in the brain. For example, the probability of finding a node with a degree twice as 

large as an arbitrary number decreases by a constant factor over the entire distribution. 

The explanatory power of small-world networks derives from their organizational 

properties, and not from the independent properties of the entities that are in small-world 

networks.   

3. Consequences. Surprisingly, Bechtel and Richardson themselves use small-world 

networks as an example to illustrate that “mechanisms” of this sort require an addition to 

the mechanistic armament, namely, “dynamic mechanistic explanation” (Bechtel and 

Richardson, 2011, 16). Dynamical mechanistic explanation utilizes the tools of 

dynamical systems theory such as differential equations, network theory, etc., to engage 

in the computer simulation of complex mechanisms wherein the differential equations in 

question cannot be solved analytically. They claim of course that such “dynamical” 

explanations should nonetheless be squarely viewed as mechanistic explanation because: 

Reliance on simulations that use equations to understand the behavior of 

mechanisms may appear to depart from the mechanistic perspective and embrace 
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something very much like the DN account of explanation. A simulation involves 

deriving values for variables at subsequent times from the equations and values at 

an initial time. However, simulations are crucially different from DN 

explanations. First, the equations are advanced not as general laws but as 

descriptions of the operations of specific parts of a mechanism. Second, the 

purpose of a computational simulation (like mental simulation in the basic 

mechanistic account) is not to derive the phenomenon being explained but to 

determine whether the proposed mechanism would exhibit the phenomenon. 

Finally, an important part of evaluating the adequacy of a computational model is 

that the parts and operations it describes are those that can be discovered through 

traditional techniques for decomposing mechanisms (Bechtel, 2011, 553).   

 

There are several things that need to be said here. First, we agree that dynamical and 

network-type explanations are not D-N explanation and therefore cannot be guilty of 

“predictivism.” Secondly, we agree that such explanations are nonetheless about 

predicting whether certain causal structures will have certain cognitive, functional or 

other features. Certainly, the fact that these simulations or dynamical/graphical systems 

predict or allow us to derive certain features does not make them explanatory. What does 

make them explanatory? These simulations show why certain causal and nomological 

structures will exhibit said features in virtue of their dynamical and graphical properties. 

Bechtel and company will balk at the word ‘nomological’, because the equations are not 

“advanced as general laws.” When defending law-like explanations and the existence of 

laws in the special sciences, it is customary to point out that even the laws of physics do 

not always meet the ideals of the D-N model. That is, physical laws are often not 

spatiotemporally universal or free of exceptions, ceteris paribus clauses, idealizations and 

approximations. We are happpy however to forgo  the word law in favor of Bechtel’s 

phrase “organizational principles.” For example, in network-based explanations the 

organizing principles include the aforementioned “power laws”,  involving self-

similarity, scale-invariance and fractal patterning in space and time. Thirdly, while it may 

be true that one aspect of evaluating the adequacy of a computational model is that the 

parts and operations it describes are discovered through traditional techniques of 

decomposition, it should be clear that the brain networks being described here are non-

decomposable and non-localizable. There is a degree of functional decomposition for 

these networks but not structural decomposition.  That is, localization is simply beside 

the point.  

 

There is no question that graphical and dynamical simulations do describe mechanisms, 

but they are not merely abstract descriptions of structural mechanisms. The key question 

here is what’s really doing the explanatory work and the answer in this case is not in the 

structural or lower level mechanistic details. The simulations are not merely idealizations 

and approximations of such lower level structural interactions. Kaplan and Craver would 

claim that these models are mechanistic because they meet the “3M” criterion. 

 

In successful explanatory models in cognitive and systems neuroscience (a) the 

variables in the model correspond to components, activities, properties, and 

organizational features of the target mechanism that produces, maintains, or 
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underlies the phenomenon, and (b) the (perhaps mathematical) dependencies 

posited among these variables in the model correspond to the (perhaps 

quantifiable) causal relations among the components of the target mechanism 

(2011, 611). 

 

If what Kaplan and Craver mean to assert here is that any explanation proffered by a 

mathematical model of a mechanism is only truly explanatory if and only if said 

explanation can be reduced to or simply mapped onto the lower level structural features 

of the mechanism, then such mathematical models fail to be explanatory. Again, these 

graphical and dynamical models are non-decomposable and non-localizable. Otherwise, 

networks-based explanation easily meet the 3M criteria. 

 

The key question is whether brains have the topological architectures they do in virtue of 

their structural mechanisms, or vice-versa? Or put another way, in virtue of what do 

graph theoretic models explain? As Bechtel himself admits, in such non-decomposable 

complex systems, the global topological features act as order-parameters (collective 

variables) that greatly constrain the behavior of the structural elements. As Sporns puts it, 

“a reentrant system operates less as a hierarchy and more as a heterarchy, where super-

and subordinate levels are indistinct, most interactions are circular, and control is 

decentralized” (2011, 193). The dynamical interactions here are recurrent, recursive and 

reentrant. So there is no sense in which the arrow of explanation or determination is in 

principle exclusively from the ‘lower level’ structural to the ‘higher’ level graphical-

dynamical. There is no structural, reductive or “downward-looking” explanation for the 

essential graphical properties of brain networks. Simply put, such global organizational 

principles or features of complex systems are not explicable in principle via localization 

and decomposition. 

 

This is true for many reasons. The aforementioned many-one relationship between the 

structural and graphical features illustrates that specific structural features are neither 

necessary nor sufficient for determining global topological features. That is, topological 

features such as the properties of small-world networks exhibit a kind of “universality” 

with respect to lower level structural details. This is why in complex systems research 

part of the goal is to discover power laws and other scale-invariant relations.  These laws 

allow us to predict and explain the behavior and future time evolution of the global state 

of the system regardless of its structural implementation. It turns out the reason power 

laws are predictive and unifying is that they show why the macroscopic dynamics and 

topological features obtain across diverse lower level structural details. And the why has 

nothing to do with similar structural details of the disparate systems.   

 

A very brief and informal characterization of universality might be helpful here. There 

are many cases of universality in physics at diverse scales, but the general idea is that a 

number of microphysically heterogeneous systems, sometimes even obeying different 

fundamental equations of motion, end up exhibiting the same phenomenological 

behavior. When this happens we say such systems share the same critical exponents and 

thus all belong to the same universality class.  The explanandum of universality is the 

uniformity and convergence of large-scale behavior across many very diverse instances. 
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That is, universality is a feature of classes of systems, not a specific system. The 

Renormalization Group analysis (RG) explains why specific physical systems divide into 

distinct universality classes in terms of the geometry or topology of the state space of 

systems, i.e., the so-called fixed points of the renormalization flow. Hamiltonians 

describing heterogeneous physical systems fall into the basin of attraction of the same 

renormalization group fixed point. The space of Hamiltonians contains numerous fixed 

points, each of which is describing different universality classes with different critical 

exponents and scaling functions. The microphysically diverse systems in the same 

universality class will exhibit a continuous phase transition, near which, their analogous 

macroscopic quantities will obey power laws possessing exactly the same numerical 

values of the critical exponents. The quantitative behavior near phase transitions exhibits 

this universality wherein the values of the exponents are identical. 
 

What is interesting here is that techniques such as RG methods from statistical mechanics 

are being successfully applied to complex biological systems that don’t have uniform 

parts. The occurrence of scale-invariance and hence self-similarity is the deeper reason 

why microphysically and mechanistically diverse systems can exhibit very similar or 

even identical macroscopic behavior. Thus, there is a direct route from power law 

behavior, scale-invariance and self-similarity to explaining why universality is true even 

in complex biological systems. Global topological features cannot be predicted from or 

derived ab initio from the structural features, because these are qualitatively different 

types of properties.   

 

We take no position over whether these are genuine laws: we agree with Woodward 

(2003) that there is no need to determine whether something is a genuine law or a mere 

invariance to determine whether it can be used in explanation. The manner of explanation 

involved here is distinctly nomological. The laws found in systems neuroscience have 

more in common with laws found in physics than most special science laws. This is not 

surprising since the formal methods involved are mostly imported from physics. In fact, 

when it comes to the traditional virtues one expects of laws (e.g., quantifiability, 

universality, predictive power, satisfaction of counterfactual conditionals, explanatory 

power, simplicity, unification, etc.), the laws in systems neuroscience are no worse off 

than most laws in physics. 

 

Explanations in systems neuroscience are highly pluralistic involving aspects of 

mechanistic, dynamical, various causal and statistical-causal explanations.   Many 

explanatory techniques are used in this endeavor including a host of causal and statistical 

modeling techniques and variety of formal/statistical measures of complexity. There are 

various hybrids of these explanatory patterns as well. Therefore systems neuroscience 

embraces explanatory and causal pluralism as a matter of pragmatic explanatory 

practice. However, the norms of such systems neuroscience explanations decidedly 

transcend those of localization.  

 

Following Woodward (2003), many mechanists such as Kaplan and Craver (2011) have 

adopted an interventionist account of mechanistic explanation in which a mechanistic 

explanation is only explanatory if it allows us to manipulate various “knobs and levers” 

of the mechanism thereby providing us with some control over the manifestation of the 
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phenomenon. Said control should allow us to “predict” how the system will behave if 

certain parts are broken, knocked-out, altered, etc. Kaplan and Craver allege that one of 

the things that separates dynamical explanations from real (causal) explanations, is that 

the former do not allow for intervention, manipulation or control.  However, explanations 

in systems neuroscience are consistent with manipulationist or interventionist theories of 

explanation in general. Indeed, not just structural decompositions, but also dynamical and 

graphical explanations, can be and often are interventionist explanations. Mechanistic 

accounts of explanation that focus on localization and decomposition have no monopoly 

on interventionist explanation. There is nothing that says the knobs being tweaked must 

be structural components, they can also be global nomological features such as order-

parameters or laws.   

 

 

The kinds of complex biological systems under discussion here present a problem for any 

simplistic interventionist mechanistic model however. For example, often knock-out type 

experiments reveal that because of various types of plasticity, robustness/degeneracy and 

autonomy in complex biological systems, turning specific structural elements on or off, 

such as genes, has no discernable or predictable effect. In other words, we learn that such 

systems are non-decomposable and thus not amenable to localization. Needless to say, 

global organizational features such as plasticity, robustness, degeneracy and autonomy 

are not explicable via localization either. Therefore, very often the type of efficacious and 

informative manipulations one performs on such systems involves not structural 

components but global features such as order-parameters.   

 

4. Conclusion. We have been arguing that the kinds of explanation common in systems 

neuroscience do not involve decomposition and localization.  This would seem to make 

them non-mechanistic. It makes no difference us whether the mechanists want to stretch 

mechanistic explanation to include explanations wherein localization or decomposition 

fail, or whether they want to acknowledge that there are counter-examples to mechanistic 

explanation in systems neuroscience. We do think however that these are the only options 

remaining to the mechanist.  

 

We have seen that: 1) there are mathematical explanations in systems neuroscience that 

are not grounded in localization and decomposition in principle, 2) mathematical 

explanations in systems neuroscience are complementary to explanations via localization 

and decomposition but not reducible to them, 3) while one can sometimes map structural 

elements onto mathematical explanations in systems neuroscience, the mapping is at least 

many-one and does not allow for structural decomposition or localization and 4) systems 

neuroscience really does provide an explanatory alternative to localization and 

decomposition that greatly transcends mere “predictivism.”   
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