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Abstract
Using the Regge calculus, we construct a Regge differential equation for the
time evolution of the scale factor a(t) in the Einstein–de Sitter cosmology
model (EdS). We propose two modifications to the Regge calculus approach:
(1) we allow the graphical links on spatial hypersurfaces to be large, as in direct
particle interaction when the interacting particles reside in different galaxies,
and (2) we assume that luminosity distance DL is related to graphical proper

distance Dp by the equation DL = (1+z)
√−→

Dp · −→
Dp, where the inner product can

differ from its usual trivial form. The modified Regge calculus model (MORC),
EdS and �CDM are compared using the data from the Union2 Compilation,
i.e. distance moduli and redshifts for type Ia supernovae. We find that a best fit
line through log

( DL

Gpc
)

versus log z gives a correlation of 0.9955 and a sum of

squares error (SSE) of 1.95. By comparison, the best fit �CDM gives SSE =
1.79 using Ho = 69.2 km s−1 Mpc, �M = 0.29 and �� = 0.71. The best fit
EdS gives SSE = 2.68 using Ho = 60.9 km s−1 Mpc. The best-fit MORC
gives SSE = 1.77 and Ho = 73.9 km s−1 Mpc using R = A−1 = 8.38 Gcy
and m = 1.71 × 1052 kg, where R is the current graphical proper distance
between nodes, A−1 is the scaling factor from our non-trivial inner product,
and m is the nodal mass. Thus, the MORC improves the EdS as well as �CDM
in accounting for distance moduli and redshifts for type Ia supernovae without
having to invoke accelerated expansion, i.e. there is no dark energy and the
universe is always decelerating.

PACS number: 98.80.−k

(Some figures may appear in colour only in the online journal)
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1. Introduction

The problem of cosmological ‘dark energy’ is by now well known [1–6]. Essentially, redshifts
and distance moduli for type Ia supernovae indicate that the universe is in a state of accelerated
expansion when analyzed using general relativistic cosmology [7–9]. Specifically, the distance
moduli increase with increasing redshift faster than predicted by general relativistic cosmology
using matter alone. Until this discovery in 1998, the so-called standard model of cosmology
was general relativistic cosmology with a perfect fluid stress–energy tensor and an early
period of inflation. Since this leads to a decelerating expansion (except during the short,
early inflationary period), something ‘exotic’ seemed to be required to account for the
unexpectedly large distance moduli at larger redshifts, namely dark energy that causes the
universe to change from deceleration to acceleration at about z = 0.752 [9]. The new ‘standard
model of cosmology’, i.e. that with the most robust fit to all observational data (�CDM),
simply adds a cosmological constant � to the Einstein–de Sitter cosmology model (EdS)
(�M +�� = 1) and � then provides the mechanism for accelerated expansion, i.e. it provides
the dark energy. The ‘problem’ is that our best theories of quantum physics tell us that the
cosmological constant should be exactly zero [10] or something hideously large [11], and
neither of these two cases holds in �CDM. Thus, one of the most pressing problems in
cosmology today is to account for the unexpectedly large distance moduli at larger redshifts
observed for type Ia supernovae [6].

The most popular attempts to explain the apparent accelerating expansion of the universe
include quintessence [11–13] and inhomogeneous spacetime [1–4, 14] (there are even
combinations of the two [15, 16]). Although these solutions have their critics [17], they
are certainly promising approaches. Another popular attempt is the modification of general
relativity (GR). These approaches, such as f (R) gravity [18–23], have stimulated much debate
[24–26], which is a healthy situation in science. Herein, we propose a new approach to the
modification of GR via its graphical counterpart, the Regge calculus.

Specifically, we construct a Regge differential equation for the time evolution of the scale
factor a(t) in the EdS, and then we propose two modifications, both motivated by our work
on foundational issues [27–29]. First, we allow spatial links of the Regge graph to be large
(as defined below) in accord with (1) our form of direct particle interaction between sources
in different galaxies and (2) the assumption that the Regge calculus is fundamental while GR
is the continuous approximation thereto. Of course, direct particle interaction in its original
form would require a modification to general relativistic cosmology in and of itself [30–35].
We are not concerned with saving direct particle interaction in its original form and, indeed,
one need not accept our version thereof to consider the modifications of GR proposed herein,
i.e. empirical motivations suffice. Second, we do not assume that luminosity distance DL is
trivially related to graphical proper distance Dp between the photon receiver and the emitter
as it is in EdS, i.e. in EdS DL = (1 + z)dp where dp is the proper distance between the photon
receiver and the emitter. There are two reasons why we do not make this assumption. First,
in our view, space, time and sources are co-constructed, yet Dp is found without taking into
account EM sources responsible for DL. That is to say, in Regge EdS (as in EdS), we assume
that pressureless dust dominates the stress–energy tensor and is exclusively responsible for
the graphical notion of spatial distance Dp. However, even though the EM contribution to the
stress–energy tensor is negligible, EM sources are being used to measure the spatial distance
DL. Second, in the continuous, GR view of photon exchange, one considers light rays (or
wave fronts) in an expanding space to find DL = (1 + z)dp. In our view, there are no ‘photon
paths being stretched by expanding space’, so we cannot simply assume DL = (1 + z)Dp

as in EdS. Indeed, we find the trivial EdS relationship between luminosity distance and
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proper distance holds only when Dp is small on cosmological scales. In order to generate a
relationship between DL and Dp, we turned to the self-consistency equation KQ = J in our
foundational approach to physics [28], where K is the differential operator, Q is the ‘field’4

and J is the source. Since we want a relationship between DL and Dp, the ‘field’ of interest
is a metric hαβ relating the graphical proper distance Dp, obtained theoretically using no EM
sources, to the luminosity distance DL, obtained observationally via EM sources. The region
in question (inter-nodal region between the emitter and the receiver) has the metric ηαβ given
by ds2 = −c2dt2 + dD2

p, so the inner product of interest can be written as ηαβ + hαβ where the
spatial coordinate is Dp and hαβ is diagonal. Since each EM source proper is not ‘stretched out’
by the expansion of space, the spatiotemporal relationship between the emitter and the receiver
is modeled per this inter-nodal region alone. Thus, unlike EdS, we have no a priori basis in
our form of direct particle interaction to relate DL to Dp, so we begin with the assumption

DL = (1 + z)
√−→

Dp · −→
Dp = (1 + z)Dp

√
1 + h11, where

−→
Dp = (0, Dp).

The specific form of KQ = J that we used was borrowed from linearized gravity in the
harmonic gauge, i.e. ∂2hαβ = −16πG(Tαβ − 1

2ηαβT ). We emphasize that hαβ here corrects
the graphical inner product ηαβ in the inter-nodal region between the worldlines of the photon
emitter and receiver, where ηαβ is obtained via a matter-only stress–energy tensor. Since the
EM sources are negligible in the matter-dominated solution, we have ∂2hαβ = 0 to be solved
for h11. Obviously, h11 = 0 is the solution that gives the trivial relationship, but allowing
h11 to be a function of Dp allows for the possibility that DL and Dp are not trivially related.
We have h11 = ADp + B where A and B are constants and, if the inner product is to reduce
to ηαβ for small Dp, we have B = 0. Presumably, A should follow from the corresponding
theory of quantum gravity, so an experimental determination of its value provides a guide
to quantum gravity per our view of classical gravity. As we will show, our best fit to the
Union2 compilation data gives A−1 = 8.38 Gcy, so the correction to η11 is negligible except at
cosmological distances, as expected. Essentially, we’re saying the dark energy phenomenon
is an indication that A �= 0 so that one cannot simply assume that the distance DL measured
using EM sources corresponds trivially to the graphical proper distance Dp even though the
EM sources contribute negligibly to the stress–energy tensor.

One might also ask about distance corrections per h00, i.e. as regards redshift, but since
redshift distances are fractions of a meter, one would not expect h00 to be of consequence here.
Of course, there is the issue of origin of redshift in our approach, since typically cosmological
redshift is understood to occur between emission and reception [36] while clearly it must occur
during emission and reception in our view. While we do not have photons propagating through
an otherwise empty space between the emitter and the receiver, we do relate the reception and
emission events in null fashion through the simplices spanning the inter-nodal region between
the emitter and the receiver. Using the metric in each simplex ds2 = −c2dt2 + dD2

p, as above,
we have dDp = adχ , just as in EdS, although t is not the proper time for the nodal observers
as it is in the EdS. This difference in t is accounted for in the computation of Dp where it has a
small effect for the range of data in the Union2 compilation5. Likewise, we do not find that it
leads to a significant difference in the scale factor at the time of emission ae as a function of z
for the data range in question. Not surprisingly, when we compute the redshift graphically, we

find that it is equivalent to the special relativity (SR) result, i.e. z+1 =
√

(1+Ve/c)(1+Vr/c)

(1−Ve/c)(1−Vr/c)
where

Ve is the velocity of the emitter at the time of emission in the (1+1)-dimensional inter-nodal

4 The interested reader is referred to section 3 of reference [28] for an explanation of how our notion of a ‘field’ is
consistent with our notion of direct particle interaction.
5 There is another difference between dp and Dp as computed using dχ = cdt

a that must be considered. This will be
explained in section 2.
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frame and Vr is the velocity of the receiver at the time of reception. Using this form of redshift
in the EdS model and comparing the result to the use of a cosmological redshift in EdS, we
find that there is no significant difference between the two results for the distance modulus
μ versus redshift z well beyond the range of the Union2 compilation (z < 2, see figure 2).
Therefore, we use the cosmological redshift ae = 1

1+z for the computation of Dp, since the
cosmological redshift is far simpler than the graphical alternative.

While these modifications are motivated by our work on foundational issues, their specific
mathematical instantiations are herein aimed at explaining dark energy. Since this is our
first foray into the modified Regge calculus (MORC), the specific approaches required for
explaining other GR phenomena, e.g. the perihelion shift of Mercury, remain to be seen. A
defense of MORC will not be undertaken here; interested readers are referred to our earlier
work cited above, but a couple of comments are perhaps in order. First, the graphical lattice
used herein to obtain a(t) clearly violates isotropy and is not to be understood as a literal
picture of the distribution of matter in the universe, e.g. galactic clusters, voids, etc. In a sense,
the graphical lattice we use is no coarser an approximation than the continuum counterpart it is
designed to replace, i.e. the featureless perfect fluid model of EdS where there is absolutely no
structure. Rather, the graphical lattice simply provides a ‘mean’ evolution for the scale factor
a(t) in the equation for Dp. Second, the goal of such idealized models is to attempt to isolate
‘average’ geometric and/or material features of cosmology which broadly capture kinematic
properties of the universe as a whole. Only when such models show some initial success are
explorations into departures from their simplistic structure motivated, e.g. the inhomogeneous
spacetime models cited above. Thus, the model we present herein was designed merely to
test the possibility of replacing the continuous EdS cosmology with a discrete, graphical
counterpart based on our form of direct particle interaction (again, for reasons unrelated to
dark energy). Only upon some success of this initial test, i.e. improving the EdS fit to the type
Ia supernova data, should we proceed to address the commensurate questions and implications
of this approach (as outlined briefly in section 4). We believe that the results presented herein
establish precisely ‘some initial success’ and therefore justify further exploration into this
idea.

We begin in section 2 with an overview of the Regge calculus and present our temporally
continuous, spatially discrete Regge EdS equation for the time evolution of the scale factor
a(t) and the commensurate equation for proper distance between the photon emitter and the
receiver Dp in a direct inter-nodal exchange. As we will see, the spatially discrete Regge EdS
equation for the time evolution of the scale factor a(t) reproduces that of EdS when spatial
links are small. Spatial links are ‘small’ when the ‘Newtonian’ graphical velocity v between
spatially adjacent nodes on the Regge graph is small compared to c, i.e.

(
v
c

)2 � 1. In that case,
the dynamics between adjacent spatial nodes is just Newtonian and the evolution of a(t) in the
Regge EdS is equal to that in EdS. Deviations in the evolution of a(t) between the Regge EdS
and MORC turn out to be small (see figure 6). Thus, the modification of Regge evolution plays
a relatively minor role in the MORC fits. Rather, as we will show, the major factor in improving

the EdS is DL = (1+z)Dp → DL = (1+z)
√−→

Dp · −→
Dp. Since the Regge EdS should give the EdS

when used as originally intended [37], the proposed mechanism for EM coupling in the MORC
differs from that in the Regge calculus. When v ≈ 2c, the Regge EdS encounters the ‘stop
point’ problem [38–40], i.e. the backward time evolution of a(t) halts, so a(t) has a minimum
and there is a maximum value of z for which one can find Dp. Of course, this is not a real
problem for the Regge EdS if one is simply using it to model the EdS, since one can regularly
check v in the computational algorithm and refine the size of the lattice to ensure v remains
small. However, in our case, the graphical approach is fundamental, so lattice refinements are
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not mere mathematical adjustments, but would constitute new ‘mean’ configurations of matter.
Of course, such refinements are certainly required in earlier cosmological eras, but one would
expect that there exists a smallest spatial scale (associated with a smallest nodal mass) so that
eventually (evolving backward in time) v ≈ 2c could not be avoided and the minimum a(t)
would be reached. Thus, there are significant deviations from our use of the Regge calculus
and its (originally intended) use as a graphical approximation to GR.

In section 3, we present the fits for the EdS, MORC and �CDM to the Union2 compilation
data, i.e. distance moduli and redshifts for type Ia supernovae [41] (see figures 4 and 5). We
find that the MORC improves the EdS as much as the �CDM in accounting for distance
moduli and redshifts for type Ia supernovae even though the MORC universe contains no dark
energy is therefore always decelerating. While we do not need to invoke dark energy, we do
propose modifications to classical gravity. Thus, it is a matter of debate as to which approach
(�CDM or MORC) is better.

Of course, the success of MORC in this context does not commit one to our foundational
motives. In fact, one may certainly dismiss our form of direct particle interaction and simply
suppose that the metric established by EM sources deviates from that of pressureless dust at
cosmological distances in a graphical approach to gravity. Since motives are not germane to
physics, we will not present arguments for our foundational motives here. Abandoning our
motives but keeping the MORC formalism would simply result in a situation similar to that
in �CDM where a cosmological constant is added to EdS for empirical reasons. That is,
one could simply view MORC as a modification of the Regge calculus for empirical reasons
without buying into our story about direct particle interaction and co-constructed space, time
and sources. Motives notwithstanding, we believe our MORC formalism may provide creative
new approaches to other long-standing problems, e.g. quantum gravity, unification and dark
matter. We conclude in section 4 by briefly outlining future directions and challenges for this
research program.

2. Overview of the Regge calculus

The Regge calculus is typically viewed as a discrete approximation to GR where the discrete
counterpart to Einstein’s equations is obtained from the least action principal on a 4D
graph [37, 42–44]. This generates a rule for constructing a discrete approximation to the
spacetime manifold of GR using small, contiguous 4D Minkowskian graphical ‘tetrahedra’
called ‘simplices’. The smaller the legs of the simplices, the better one may approximate
a differentiable manifold via a lattice spacetime (figure 1). Although the lattice geometry
is typically viewed as an approximation to the continuous spacetime manifold, it could be
that the discrete spacetime is fundamental while ‘the usual continuum theory is very likely
only an approximation’ [45] and that is what we assume. Curvature in the Regge calculus is
represented by ‘deficit angles’ (figure 1) about any plane orthogonal to a ‘hinge’ (triangular side
of a tetrahedron, which is a side of a simplex6), so the curvature is said to reside on the hinges. A
hinge is two dimensions less than the lattice dimension, so in 2D a hinge is a zero-dimensional
point (figure 1). The Hilbert action for a vacuum lattice is IR = 1

8π

∑
σi∈L εiAi where σi is a

triangular hinge in the lattice L, Ai is the area of σi and εi is the deficit angle associated with
σi. The counterpart to Einstein’s equations is then obtained by demanding δIR

δ2
j
= 0 where 2

j is

the squared length of the jth lattice edge, i.e. the metric. To obtain equations in the presence of
matter–energy, one simply adds the matter–energy action IM to IR and carries out the variation
as before to obtain δIR

δ2
j
= − δIM

δ2
j

[46]. The LHS becomes δIR

δ2
j
= 1

16π

∑
σi∈L εi cot �i j where �i j is

6 Our hinges are triangles, but one may use other 2D polyhedra.
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ti

ti 1

ti 1

(a) (b)

Figure 1. (a) Tessellated sphere and (b) two ‘flattened’ trapezoids (thick outline) from the sphere.

the angle opposite edge  j in the hinge σi. One finds that the stress–energy tensor is associated
with lattice edges, just as the metric, and Regge’s equations are to be satisfied for any particular
choice of the two tensors on the lattice. The extent to which the Regge calculus reproduces
GR has been studied [47–49] and general methods for obtaining Regge equations have been
produced [50], but these results are of no immediate concern to us because we simply seek
the Regge counterpart to a specific GR equation, i.e. a Regge differential equation for the time
evolution of the scale factor a(t) in EdS. Whether or not we obtain the said equation will be
clear by virtue of its ability to track the analytic EdS solution in the proper regime, so we will
not have to delve into issues associated with the ‘accuracy’ of the Regge calculus in general.

2.1. Regge EdS equation and the MORC

Following Brewin [51] and Gentle [52], we take the stress–energy associated with the
worldlines of our particles to be of the form

12Gm

c2(ic�t)
so our Regge equation is

12iR(an + an+1)

c�t

⎛
⎝π − cos−1

⎛
⎝ ( R

c )
2
(

an+1−an
�t

)2

2

(
( R

c )
2
(

an+1−an
�t

)2+2

)
⎞
⎠ − 2 cos−1

⎛
⎝

√
3( R

c )
2
(

an+1−an
�t

)2+4

2

√
( R

c )
2
(

an+1−an
�t

)2+2

⎞
⎠

⎞
⎠

√(
R
c

)2 ( an+1−an

�t

)2 + 4

= 12iGm

c3�t
. (1)

Multiplying both sides of (1) by −ic�t/12 and letting v = R(an+1 − an)/�t gives

R(an + an+1)

(
π − cos−1

(
v2/c2

2(v2/c2+2)

)
− 2 cos−1

(√
3v2/c2+4

2
√

v2/c2+2

))
√

v2/c2 + 4
= Gm

c2
. (2)
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If �t → 0, then v can be regarded as a ‘Newtonian’ velocity and R(an +an+1) can be replaced
by 2r, where r is the graphical proper distance between two adjacent vertices on the lattice.
Equation (2) then becomes

π − cos−1
(

v2/c2

2(v2/c2+2)

)
− 2 cos−1

(√
3v2/c2+4

2
√

v2/c2+2

)
√

v2/c2 + 4
= Gm

2rc2
(3)

which we emphasize as the unmodified Regge calculus. If v2/c2 � 1, then a power series
expansion of the LHS of equation (3) gives

v2

4c2
+ O

(v

c

)4
= Gm

2rc2
. (4)

Thus, to leading order, our Regge EdS is EdS, i.e. v2

2 = Gm
r , which is just a Newtonian

conservation of the energy expression for a unit mass moving at escape velocity v at distance
r from mass m. To better understand the relationship between the Regge EdS and EdS, we
note that in EdS any comoving observer A can ask, ‘What is the proper time rate of change
of proper distance for the comoving observer B at a proper distance r away from me today?’
The answer is precisely v given by the EdS equation v2

2 = Gm
r , where m is the mass contained

inside the sphere of radius r centered on observer A. In EdS the matter is distributed uniformly
throughout space so the mass m inside a sphere of radius r goes as r3; thus, v ∝ r on spatial
hypersurfaces in the EdS equation, so there is no limit to how large v is in this expression, its
Newtonian. In the Regge EdS, v is the relative ‘Newtonian’ velocity of spatially adjacent nodes
of mass m. In our view, photon exchanges occur in direct node-to-node fashion, but solving
for a Regge graph between all galaxies in the universe is of course unreasonable. Instead, we
use equation (3) to provide a ‘mean’ a(t) for the computation of graphical proper distance Dp

between any two photon exchangers, as in EdS, i.e.

proper distance = χe = c
∫ to

te

dt

a
= c

∫ 1

ae

da

aȧ
. (5)

We then compute Dp as a function of z by using equation (3) obtained from the ‘mean’
graph. However, before we continue there are two issues that we need to address regarding
equation (5).

First, while it is true that cdt = adχ for a null path in a simplex and the null path will
cross all values of χ between the emitter and the receiver, the sum of dχ = cdt

a will not equal
χe, i.e. the radial coordinate of the emitter. That is because the lines of constant χ are tilted
in the simplices (figure 3), so there is a fraction of dχ (given by � in figure 3) that is not
accounted for by cdt

a . This � is positive on the emitter’s side of the simplex and negative on
the receiver’s side, but the � sum on the two sides won’t cancel out exactly, since the extent
of constant-χ tilt is reduced during the expansion. The correct equation for the graph is

χe = c
∫ to

te

(
1 + 2V

c

(
χ(t)

χe
− 1

2

))
dt

a
, (6)

where V is the SR velocity of the emitter or receiver as a function of time and relates to our
‘Newtonian’ v per

V

c
= v/2c√

1 + v2/4c2
. (7)

To simplify the analysis and obtain an estimate of how much � contributes, we use EdS with
z = 2 and Ho = 70 km s−1 Mpc. From EdS, we have a(t) = (

t
to

)2/3
, χ

χe
= 1 − 3ct2/3

o
χe

(
t1/3 − t1/3

e

)
and v

2c = χe

3ct2/3
o t1/3

. For z = 2 and Ho = 70 km s−1 Mpc, we have to = 9.31 Gy, te = 1.79 Gy and

7
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χe = 11.81 Gcy. Using these values in equation (6), we find (iteratively) χe = 12.189 Gcy.
This increases μ (equation (13)) by 0.069 at z = 2 where μ is slightly greater than 44 (figure 5).
This increase adds 0.0137 to log

( DL
Gpc

)
in our curve fitting, which amounts to a 1.3% increase

at z = 2. This change is only 0.75% at z = 0.5 and 0.004% at z = 0.1. Thus, given the scatter
in the data, we will ignore this correction.

Second, in the EdS, the scaling factor at emission is related to the redshift by ae = 1
1+z . In

the EdS, this redshift is understood to occur while the radiation is in transit between the emitter
and receiver [36]. This ‘cosmological’ redshift can be understood in the graphical picture to
result from the fact that dt in the EdS runs along lines of constant χ and these lines are tilted
away from the center of the simplex toward its nodal worldlines as discussed above (figure 3).
That is, � = 0 in the EdS so χe = ∫ to

te
cdt
a holds exactly. Thus, two EdS null paths emanating

from different points on a spatial link have their proper distance of separation increase from
simplex to simplex. However, as explained above, our dt is perpendicular to the spatial links so
the null paths of successive emissions do not increase proper distance separation when traced
through the simplices, i.e. redshift occurs entirely at emission and reception. Thus, relating
successive events along the emitter’s worldline in a null fashion to events on the receiver’s
worldline, it is not surprising that we find that the time delay between successive reception
events as related to the temporal spacing of the emission events is that given by SR, i.e.

z + 1 =
√

(1 + Ve/c)(1 + Vr/c)

(1 − Ve/c)(1 − Vr/c)
, (8)

where Ve is the SR velocity of the emitter at the time of emission in the (1+1)-dimensional
inter-nodal frame and Vr is the SR velocity of the receiver at the time of reception. Again, these
SR velocities relate to our graphical ‘Newtonian’ v per equation (7). As above, we simplify the
analysis using the EdS equation for a(t) and find vr = χeHo and ve = χeHo√

ae
where, again, χe

is the comoving coordinate of the emitter with the receiver at the origin. We need to find
√

ae

as a function of z, and then substitute into the equation for proper distance between photon
exchangers in the EdS

dp = 2c

Ho
(1 − √

ae). (9)

Even with the simplifications, the process gets messy and ultimately was solved numerically.
Since ao = 1, we have dp = χe (as assumed in equation (5)). Let x = χeHo

2c and we find

√
ae = x

√
(A + 1)2

(A − 1)2
− 1, (10)

where

A = (z + 1)2(
√

1 + x2 − x)√
1 + x2 + x

. (11)

Thus, equation (9) is x = 1 − x
√

(A+1)2

(A−1)2 − 1 and gives

A2 − 2A + 1 − 2xA2 + 4Ax − 2x + A2x2 + x2 − 6Ax2 = 0. (12)

We then solve equation (12) numerically for x as a function of z and compare with the EdS
version, i.e. x = 1− 1√

1+z
to obtain figure 2 where we see that there is no significant difference

between the two results well beyond the range of the Union2 compilation (z < 2).
Since these two differences between the MORC and the EdS do not result in any significant

difference in our fit to the data of interest, we simply use equation (5) with ae = 1
1+z to compute

Dp. However, there is one additional difference between dp and Dp when using equation (5)
that we will not ignore. We will address this additional (simple) correction in the following
section where we fit the EdS, MORC and �CDM to the Union2 compilation.
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Figure 2. Comparison of the cosmological redshift (gray) and graphical special relativistic redshift
(dotted) using the EdS. The two curves begin to be resolved at z = 6.

dt d

dχn

dχn

Figure 3. Lines of constant χ are tilted away from midpoint of simplex toward emitter and receiver.

3. Data analysis

The Union2 compilation provides distance modulus μ and redshift z for each supernova. In
order to find μ versus z for each model, we first find the proper distance as a function of z,
then compute the luminosity distance DL, and finally

μ = 5 log

(
DL

10pc

)
. (13)

For the EdS, we have equation (9) for dp, so the only parameter in fitting the EdS is Ho.

For the �CDM, we have ȧ = Ho

√
�M
a + ��a2 where �M + �� = 1. Plugging this into

9
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equation (5) we obtain

dp = c

Ho
4
√

3 3
√

�m
6
√

��

⎡
⎣F

⎛
⎝cos−1

⎛
⎝ 3

√
�m −

(√
3 − 1

)
3
√

��

3
√

�m + (
√

3 + 1) 3
√

��

⎞
⎠

∣∣∣∣∣∣
2 + √

3

4

⎞
⎠

−F

⎛
⎝cos−1

⎛
⎝ (z + 1) 3

√
�m −

(√
3 − 1

)
3
√

��

(z + 1) 3
√

�m + (
√

3 + 1) 3
√

��

⎞
⎠

∣∣∣∣∣∣
2 + √

3

4

⎞
⎠

⎤
⎦ , (14)

where F(φ|m) = ∫ φ

0

(
1 − m sin2 θ

)−1/2
dθ is the elliptic integral of the first kind. Thus, there

are two fitting parameters for �CDM, Ho and either �M or ��. For the MORC, equation (3)
gives us a(ȧ) rather than ȧ(a), so we modify equation (5) to read

Dp = R
∫ b1

be

f ′(b)

b f (b)

√
1 + b2

4
db, (15)

where b = Rȧ/c,

f (b) =
√

b2 + 4

2
[
π − cos−1

(
b2

2b2+4

)
− 2 cos−1

(√
3b2+4

2
√

b2+2

)] (16)

and b1 and be respectively solve

1 = Gm

c2R
f (b1) and ae = Gm

c2R
f (be).

The factor
√

1 + b2

4 is the correction needed to adjust the time dt in equation (5) to proper
time dτ of the nodal worldlines. (This is the ‘one additional difference between dp and Dp

when using equation (5)’ alluded to at the end of section 2.) Equation (5) is then solved
numerically for Dp and DL = (1 + z)Dp

√
1 + ADp as explained in section 1. There are three

fitting parameters for the MORC, the inter-nodal coordinate R on the ‘mean’ graph, the nodal
mass m on the ‘mean’ graph and A−1 from h11. Specifying m and R is equivalent to specifying

Ho in the EdS, i.e. Ho =
√

8πGρ

3 in the EdS with ρ given by the graphical values of R and m

per 4
3πR3ρ = m. Thus, compared to the EdS, the MORC (as with �CDM) has one additional

fitting parameter A−1, which presumably will be accounted for ultimately by the corresponding
theory of quantum gravity.

As mentioned above, we fit these three models to the Union2 compilation data (see
figures 4 and 5). In order to establish a statistical reference, we first found that a best-fit
line through log

(
DL

Gpc

)
versus log z gives a correlation of 0.9955 and a sum of squares error

(SSE) of 1.95. The EdS cannot produce a better fit than this best-fit line. The best-fit EdS
gives SSE = 2.68 using Ho = 60.9 km s−1 Mpc. A current (2011) ‘best estimate’ for the
Hubble constant is Ho = (73.8 ± 2.4) km s−1 Mpc [53]. Both MORC and �CDM produce
better fits than the best-fit line with better values for the Hubble constant than the EdS. The
best-fit �CDM gives SSE = 1.79 using Ho = 69.2 km s−1 Mpc, �M = 0.29 and �� = 0.71.
This best-fit �CDM is consistent with its fit to the WMAP data using the latest distance
measurements from BAO and a recent value of the Hubble constant [54]. The best-fit MORC
(case 1, table 1) gives SSE = 1.77 and Ho = 73.9 km s−1 Mpc using R = A−1 = 8.38 Gcy and
m = 1.71 × 1052 kg. Given the scatter in the data, the MORC and �CDM produce essentially
equivalent fits, clearly superior to the EdS.

The ‘stop point’ value of z in the MORC best fit is only 2.05, so we expect the Regge
evolution deviates discernibly from the EdS evolution in this trial. To check this, we compared

10
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Figure 4. Plot of transformed Union2 data along with the best fits for linear regression (black),
EdS (dashed), �CDM (gray) and MORC (dotted).
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Figure 5. Plot of Union2 data along with the best fits for EdS (dashed), �CDM (gray) and MORC
(dotted). The MORC curve is terminated at z = 1.4 in this figure so that the �CDM curve is visible.

the Regge model using the best-fit parameters and h11 = 0 with its EdS counterpart. As
explained above, the EdS counterpart to a Regge graphical result is obtained by using

Ho =
√

8πGρ

3 in the EdS with ρ given by the graphical values of R and m per 4
3πR3ρ = m.

The top graph in figure 6 shows that there is in fact a discernible difference between the
Regge and EdS evolutions, and the EdS value of Ho obtained per R and m in this trial is
68.5 km s−1 Mpc, which is significantly lower than Ho = 73.9 km s−1 Mpc found in the
MORC. In fact, the 20 trials with the lowest SSE values (cases 1–20, table 1) have ‘stop
point’ z less than 10, so the Regge evolution, as distinct from the EdS evolution, does come
into play. However, the Regge evolution tracks the EdS evolution when ‘stop point’ z is
as small as 9.98 (see the bottom graph in figure 6) as is true in case 21 of table 1. And
SSE = 1.78 for case 21 is still comparable to SSE = 1.79 of the best-fit �CDM. The only
casuality in the higher ‘stop point’ z trials is Ho, which is lowered when Regge evolution tracks
EdS evolution. However, the Ho = 71.2 km s−1 Mpc in case 21 is still comparable to Ho =
69.2 km s−1 Mpc for the best-fit �CDM. Thus, the Regge evolution plays a relatively minor
role in the MORC fits. Since we used the cosmological redshift, χe = ∫ to

te
cdt
a , and the Regge

evolution played a minor role in the MORC fits, we conclude that the major factor in improving

11
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Table 1. Table of 35 trials that produced the best fits for the MORC. Column R is X in R = 10X m.
Column ρ is X in ρ = X × 10−27kg m−3. Column A−1 is X in A−1 = 10X m. The other columns
are self-explanatory.

R ρ A−1 SSE Ho EdS Ho Stop point z

1 25.9 8.15 25.90 1.770 06 73.9081 65.8705 2.046 30
2 25.9 8.20 25.90 1.770 92 74.1955 66.0722 2.027 72
3 25.9 8.10 25.90 1.772 78 73.6205 65.6681 2.065 10
4 25.9 8.00 25.95 1.774 53 73.0450 65.2615 2.103 41
5 25.9 7.95 25.95 1.775 11 72.7569 65.0572 2.122 93
6 25.9 8.25 25.90 1.775 32 74.4828 66.2734 2.009 37
7 25.8 8.45 25.95 1.775 47 72.0349 67.0719 3.656 64
8 25.8 8.50 25.95 1.776 38 72.2812 67.2700 3.629 25
9 25.9 8.35 25.85 1.777 30 75.0570 66.6738 1.973 33

10 25.8 8.40 25.95 1.777 42 71.7882 66.8731 3.684 36
11 25.9 8.05 25.95 1.777 57 73.3328 65.4651 2.084 14
12 25.7 8.80 25.95 1.778 21 71.6287 68.4468 6.086 75
13 25.7 8.75 25.95 1.778 24 71.4054 68.2521 6.127 24
14 25.9 8.40 25.85 1.778 52 75.3439 66.8731 1.955 63
15 25.8 8.65 25.90 1.778 58 73.0178 67.8610 3.548 98
16 25.9 8.05 25.90 1.779 14 73.3328 65.4651 2.084 14
17 25.8 8.70 25.90 1.779 29 73.2626 68.0568 3.522 83
18 25.9 7.90 25.95 1.779 38 72.4687 64.8523 2.142 70
19 25.9 8.30 25.85 1.779 58 74.7700 66.4739 1.991 24
20 25.8 8.55 25.95 1.780 09 72.5271 67.4676 3.602 18
21 25.6 9.00 25.95 1.780 19 71.2375 69.2203 9.98215
22 25.6 8.95 25.95 1.780 53 71.0276 69.0277 10.0435
23 25.7 8.85 25.95 1.780 61 71.8515 68.6410 6.046 71
24 25.8 8.60 25.90 1.780 65 72.7726 67.6646 3.575 42
25 25.7 8.70 25.95 1.780 73 71.1816 68.0568 6.168 21
26 25.5 9.10 25.95 1.781 71 70.8743 69.6038 16.2143
27 25.5 8.90 26.00 1.781 97 70.0626 68.8347 16.6011
28 25.6 9.05 25.95 1.782 06 71.4470 69.4123 9.921 47
29 25.5 9.15 25.95 1.782 08 71.0759 69.7947 16.1202
30 25.6 8.75 26.00 1.782 09 70.1832 68.2521 10.2959
31 25.6 8.80 26.00 1.782 22 70.3950 68.4468 10.2317
32 25.4 9.00 26.00 1.782 26 69.9994 69.2203 26.5859
33 25.8 8.35 25.95 1.782 26 71.5412 66.6738 3.712 41
34 25.3 9.05 26.00 1.782 36 69.9045 69.4123 42.4792
35 25.7 8.55 26.00 1.782 37 70.5076 67.4676 6.293 96

the EdS is DL = (1 + z)Dp → DL = (1 + z)
√−→

Dp · −→
Dp. Again, given the scatter of the Union2

compilation data, we consider any of the 35 MORC results in table 1, where SSE � 1.78 and
Ho ranges (69.9 → 75.3) km s−1 Mpc, equivalent to the best-fit �CDM.

4. Discussion

We have explored a MORC approach to the EdS, comparing the result with �CDM using the
Union2 compilation of type Ia supernova data. Our motivation for MORC comes from our
approach to foundational physics that involves a form of direct particle interaction whereby
sources, space and time are co-constructed per a self-consistency equation. Accordingly, since
EM sources are used to measure luminosity distance DL but are not used to compute graphical
proper distance Dp, we did not expect Dp to correspond trivially to the luminosity distance
DL, i.e. we did not assume DL = (1 + z)Dp. Rather, we assumed a more general relationship
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Figure 6. Top graph shows Regge evolution (dotted) without h11 correction and EdS evolution
(gray) for case 1 in table 1 where the ‘stop point’ z is 2.05. The bottom graph makes the same
comparison for case 21 in table 1 where the ‘stop point’ z is 9.98.

DL = (1 + z)
√−→

Dp · −→
Dp where the inner product employed a correction to the inter-nodal

graphical metric, ηαβ → ηαβ + hαβ with the spatial coordinate Dp and hαβ diagonal, so that
DL = (1 + z)Dp

√
1 + h11. The method used to find h11 was a form of our self-consistency

equation KQ = J borrowed from the homogeneous linearized gravity equation in the harmonic
gauge, i.e. ∂2hαβ = 0. While h11 = 0 is the solution typically used, we allowed h11 to be a
function of Dp which gave h11 = ADp + B where A and B are constants. Since we wanted the
inner product to reduce to ηαβ for small Dp, we set B = 0. Our best-fit MORC (case 1, table 1)
gave A−1 = 8.38 Gcy, so the correction to η11 is negligible except at cosmological distances,
as expected.

We found that in the context of the Union2 compilation data MORC improved EdS as
well as �CDM without having to employ dark energy. That is, the MORC universe evolves
per pressureless dust and is always decelerating yet it accounts for distance moduli versus
redshifts for type Ia supernovae as well as �CDM. Of course, this does not commit one
to our foundational motives. In fact, one may certainly dismiss our form of direct particle
interaction and simply suppose that the metric established by EM sources deviates from that of
pressureless dust at cosmological distances; we did not present arguments for our foundational
motives here. Abandoning our motives while keeping the MORC formalism would simply
result in a situation similar to that in �CDM where a cosmological constant is added to EdS
for empirical reasons, i.e. the Regge calculus was modified to account for distance moduli
versus redshifts in type Ia supernovae. Motives notwithstanding, MORC’s empirical success
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in dealing with dark energy gives us reason to believe that this formal approach to classical
gravity may provide creative new techniques for solving other long-standing problems, e.g.
quantum gravity, unification and dark matter.

In order to explore this possibility, we need to check MORC against the Schwarzschild
solution, where experimental data are well established and GR is well supported. While tests
of the Schwarzschild solution have been conducted on spatial scales much smaller than the
cosmological scales where we found a correction to EdS, it has been shown that the simplices
must be small in order to reproduce the GR redshift and the perihelion precession of Mercury
in the Schwarzschild solution [55, 56]. Thus, we need to verify that the MORC is consistent
with the Schwarzschild solution per observational data. We might refine our study of MORC
cosmology, but we feel that the easiest way to test the MORC is via the Schwarzschild solution
where perhaps the issue of dark matter can be addressed in a fashion similar to dark energy
in the EdS. If by chance we are able to construct a MORC for the Schwarzschild solution that
passes empirical muster, we would then consider the more general issue of an action for the
MORC in order to consider new approaches to quantum gravity and unification. Given the
level of uncertainty involved in the next step alone, we won’t speculate further.
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