<table>
<thead>
<tr>
<th>Manuscript Number:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Title:</td>
<td>Interference and Explanation in Time-Symmetric Quantum Mechanics</td>
</tr>
<tr>
<td>Article Type:</td>
<td>PSA 2012 Contributed Paper</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Quantum mechanics; time symmetry; retrocausal; explanation; interference.</td>
</tr>
</tbody>
</table>
| **Corresponding Author:** | Peter Lewis
University of Miami
Coral Gables, FL UNITED STATES |
| **Corresponding Author Secondary Information:** | |
| **Corresponding Author's Institution:** | University of Miami |
| **Corresponding Author's Secondary Institution:** | |
| **First Author:** | Peter Lewis |
| **First Author Secondary Information:** | |
| **Order of Authors:** | Peter Lewis
Michael Silberstein
William Mark Stuckey |
| **Order of Authors Secondary Information:** | |
| **Abstract:** | There has been considerable interest recently in time-symmetric versions of quantum mechanics; such theories are not subject to Bell's theorem, and hence reopen the possibility of taking an epistemic attitude to the wavefunction. However, explaining interference phenomena remains a challenge for wavefunction-epistemic quantum mechanics. In this paper we consider the options for a time-symmetric explanation of interference via waves and via particles, discuss their problems, and propose a third explanatory strategy via acausal global constraints. |
Interference and Explanation in Time-Symmetric Quantum Mechanics

Abstract
There has been considerable interest recently in time-symmetric versions of quantum mechanics; such theories are not subject to Bell’s theorem, and hence reopen the possibility of taking an epistemic attitude to the wavefunction. However, explaining interference phenomena remains a challenge for wavefunction-epistemic quantum mechanics. In this paper we consider the options for a time-symmetric explanation of interference via waves and via particles, discuss their problems, and propose a third explanatory strategy via acausal global constraints.

1. Wavefunction Epistemicism
The quantum wavefunction naturally suggests an epistemic interpretation. The intensity (squared amplitude) of the wavefunction yields the probabilities of obtaining the various possible measurement outcomes on observation. During observation, but not otherwise, the wavefunction (apparently) collapses discontinuously to an eigenstate corresponding to the observed outcome. These features are straightforwardly explained under an epistemic approach; the wavefunction is regarded as a statistical summary of our knowledge of the underlying local physical properties of the particles involved, so its connection to the probabilities of observed outcomes is built-in, and wavefunction collapse on observation simply reflects our coming to know the relevant measurement outcome.

The twin mysteries of QM are non-separability and interference, and both seem to stand in the way of an epistemic interpretation of the wavefunction, non-separability because of Bell's Theorem, and interference because wavefunction realism is apparently required by our causal explanations. For these reasons, the epistemic interpretation is widely regarded to be a non-
starter; hence the proliferation of realist approaches that take the wavefunction to be a physical entity, such as Everett's relative-state approach, Bohm's pilot-wave approach and the GRW collapse approach.

Recently, however, some progress has been made in rehabilitating wavefunction epistemicism by appealing to time-symmetric, retrocausal or atemporal explanation. In particular, a time-symmetric interpretation of QM has been shown to provide a plausible way of exploiting a loophole in Bell's theorem (Price 1996). If the states of the particles on emission can depend on the setting of the detectors they will later encounter, then Bell's theorem does not go through, and hence can be no barrier to interpreting the wavefunction as a statistical summary of our knowledge of the underlying properties of the particles.

So Bell’s theorem does not stand in the way of wavefunction epistemicism. But what about interference, the second mystery? According to wavefunction-realist approaches the two mysteries are connected, since both non-separability and interference are explained in terms of superpositions of distinct wavefunction terms. But wavefunction-epistemic approaches cannot take this route, since superpositions simply reflect an observer’s knowledge, and so cannot ground a physical explanation of either phenomenon. Indeed, wavefunction-epistemic explanations of EPR-Bell correlations make no mention of superposition, but simply appeal to the properties of the particles, the measurement settings, and time-symmetric causation. Without superposition, interference phenomena become problematic, since interference is prima facie a physical interaction between the various superposed branches. In what follows, we explore the prospects for accommodating interference within time-symmetric, wavefunction-epistemic quantum mechanics.

2. Explaining Interference via Fields
As a simple example of interference, consider a Mach-Zehnder interferometer (MZI), as shown in Fig. 1. The standard wavefunction-realist analysis is as follows: The wavefunction intensity associated with an incoming particle is split into two equal components by beam-splitter A, and half the intensity follows each path through the interferometer, ABD and ACD. The two components of the wavefunction intersect at beam-splitter D; if the two components are exactly in phase, then all the intensity exits the interferometer through path E (because the waves along path F exactly cancel out), and if they are exactly out of phase then all the intensity exits though path F (because the waves along path E exactly cancel out). On the other hand, if all the wavefunction intensity takes path ABD (because the beam-splitter at A is removed), then no interference occurs at D; equal wavefunction intensities emerge along paths E and F.

Initially, then, interference seems to rule out an epistemic approach, since the explanation of the phenomena depends on real waves travelling both paths and physically interacting at D. The time-symmetric approach is essentially a “hidden variable” approach, in that the wavefunction describes our state of knowledge concerning the actual underlying physical state of the system. If the intensity on each branch is 1/2, this means that there is a 50% epistemic probability that the actual physical state is a particle taking path ABD and a 50% probability that it is a particle taking path ACD. But if the actual physical system takes one path rather than the other, there is no physical interaction between entities taking the two paths at D, and the explanation of interference is lost.

But it is important to note that the time-symmetric approach does not require that the “hidden variables” take the form of particle properties. Indeed, several proponents of the time-symmetric approach take the wavefunction to describe our knowledge of fields rather than our knowledge of particles, and they do so precisely so as to give a physical account of interference. Consider, for example, Cramer's (1986) transactional interpretation. According to this approach,
the wavefunction should not be regarded as a physically real field inhabiting a 3N-dimensional configuration space; rather, what is real is a transaction, which is a field in ordinary 3-dimensional space. Nevertheless, one can as a matter of convenience take the wavefunction as a summary of our knowledge of the transactions at a time, yielding the probability that each possible transaction is actual via the Born rule.

According to the transactional interpretation, in non-interference situations a transaction forms along a determinate spatial trajectory. For example, suppose the beam-splitter at A is removed from the MZI. Then two possible transactions may form, one along ABDE and one along ABDF, and the traditional wavefunction intensities at E and F reflect the epistemic probability that each of these transactions is actual. However, in interference situations, a transaction forms along a disjoint trajectory. With the beam-splitter at A in place, and with path-lengths ABD and ACD chosen appropriately, a single transaction forms between A and E, split between paths ABDE and ACDE. This single transaction consists of a classical field that takes both paths through the interferometer, and hence the physical interaction between the field amplitudes arriving at D from B and from C can explain the interference effect.

Wharton (2010) takes a related approach, in that he also takes the quantum wavefunction to be of merely epistemic significance, where the true underlying state of a quantum system is characterized in terms of a classical field evolving between an initial boundary condition (preparation) and a final boundary condition (detection). Wharton takes a Feynman-path approach to the field between the two boundaries, interpreting it as a sum over all possible paths. As in the transactional approach, for the MZI without interference (beam-splitter at A removed) the field forms either along path ABDE or along ABDF, and in the interference case (beam-splitter present) the field forms along both paths ABDE and ACDE simultaneously.
The transactional interpretation has been criticized on a number of fronts; in particular, since transactions form between particle emission events and particle absorption events, the theory has difficulty accommodating situations where the absorbers do not occupy fixed space-time points, but move in response to the actual path taken by the transaction (Maudlin 1994, 200). Even putting aside this case, identifying the ends of a transaction with particle emission and absorption points is problematic. The assumption seems to be that all measurement outcomes are particle absorptions, since it is particle absorptions that are made determinate by the transactional approach. But this is far from obvious. Indeed, elementary QM (with a fixed number of particles) necessarily models measurement without particle absorption, typically as the correlation between a microscopic system and a macroscopic pointer. There is no reason why a transaction should make such a measurement event determinate, rather than being a superposition of classical waves passing through several distinct measurement outcomes.

Perhaps Wharton's approach can be more flexible in this regard; perhaps it need not take particle destruction as the only future constraint on the classical field. But note that a dilemma threatens. If the future constraint is tied to a particular kind of physical process, then we need some reason to think that all measurements will be instances of this process, otherwise measurement outcomes need not be made determinate. But if the future constraint is not tied to a particular kind of physical process, but is simply whatever constitutes a measurement, then the measurement problem reemerges. That is, if all that distinguishes the future constraint on the field from other physical processes is that it constitutes a measurement, then stipulating that the field converges to this point is arbitrary, since measurements are just physical processes too.

The basic worry here is that the field-based time-symmetric approaches are unstable hybrids. On the one hand, they seek to interpret the wavefunction epistemically rather than ontically, such that preparations and measurements are merely points at which we have a
particularly detailed knowledge of the quantum system. On the other, they retain the field-like behavior of the wavefunction at the ontic level, with a wave that spreads out from the preparation point and converges to the measurement point. Even if the above dilemma is not convincing, there is a feeling of redundancy about it; as Price has remarked, the time-symmetric approach promises to restore discrete trajectories to QM, so to back away from discrete trajectories at this point “misses the true potential” of the approach (1996, 283).

3. Explaining Interference via Particles

Of course, the choice of fields rather than discrete trajectories is not unmotivated, but is motivated by the desire to explain interference. What can a discrete approach do here? It is worth noting that the heart of the time-symmetric approach is that a system can bear the traces of future interactions, just as it can bear the traces of past interactions. In particular, the state of the system can depend on where and how it will be detected. In the case of the MZI, then, it is no mystery that, for suitable path-lengths, the particles always go to E, since their ending up at E is just as much a constraint on the particles as their starting out at A. That is, what one might typically take as the explanandum in the interference case is taken as part of the explanans in a time-symmetric treatment. Indeed, this brings to the fore the sense in which the transactional and Wharton approaches seem to incorporate a redundancy. Both of them presuppose in their analysis that there is a future constraint on the classical field as well as a past constraint, and the future constraint is absorption at E. But then in what sense does absorption at E call for an explanation, if it is one of the boundary conditions? And if it does not call for an explanation, why insist that the underlying reality consists of fields just so as to provide such an explanation?

The obvious answer is that absorption at E calls for an explanation in the sense that simply taking it as a boundary condition makes the explanation of interference trivial. Why is it
that for this choice of path-lengths all the particles go to E? It hardly seems satisfactory to reply “because the particles bear traces of being absorbed at E”; this just presupposes what we are trying to explain. However, explanation is a tricky matter; perhaps the explanation just looks trivial because we are used to explanations that proceed from the past to the future, so that taking a future state as an explanans seems to our untutored intuitions like cheating. Indeed, as long as the detection point and the emission point do not constitute all the degrees of freedom for the system, then the potential for a substantive explanation of the remaining degrees of freedom remains.

To put the same point in a slightly different way, perhaps the accusation is that an explanation that takes the end-point as given is vacuous since any phenomenon could be “explained” in this way, so nothing is really explained. But such a complaint would be premature, since we have as yet given no laws or mechanisms for a discrete time-symmetric approach. The mere form of an explanation is typically vacuous; it is only the laws or mechanisms that constrain the connections between the explanans and explanandum that give the explanation content. Indeed, one might accuse explanations in classical physics that start with the initial state of a system of being vacuous, since anything can be explained in this way. Ironically, though, not everything can be explained from initial conditions; this is precisely the lesson that Price draws from EPR-Bell experiments. Hence one needs to broaden the explanans to include some final conditions as well as some initial conditions. One certainly hopes that doing so means every phenomenon can potentially be explained, given suitable laws or mechanisms; that is precisely the point.

Still, without a concrete candidate for a law or mechanism that can constrain discrete particle trajectories in the required way, the worry that the explanation of interference will remain trivial cannot be fully put to rest. So perhaps there is a third alternative in the time-
symmetric camp that can avoid the problems facing both the alternatives canvassed so far.

There is a sense in which neither the field-based nor the trajectory-based approach fully exploits the explanatory resources that are made available by the time-symmetric program, since both still explain phenomena primarily via possessed physical properties that are traced through time by the underlying ontology, whether that ontology is discrete or continuous. They also appeal to the initial and final boundary conditions, but the constraints imposed by these conditions are always mediated by the dynamical properties of the system. Perhaps more insight—and deeper explanations—can be had by concentrating on the global consistency conditions imposed by these constraints directly, where “global” is spatiotemporal, i.e., the experiment from initiation to termination (measurement outcomes). The hope is that by explaining the behavior of a system in a global, adynamical or timeless fashion, the explanation of interference can avoid both the problems of appealing to dynamic interaction between fields and the apparent triviality of explanations based on particle trajectories.

4. Explaining Interference via Acausal Global Constraints

Herein we will provide an explanation of MZI interference utilizing acausal global constraints. Whether this is anything more than a toy-model remains to be seen, but hopefully it provides a proof in principle that such an explanation is possible. Let us begin with the standard QM description of the MZI. One starts with a directed source and a pair of detectors E and F (see Fig. 1); vector \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \) represents the source aimed at E and vector \(\begin{pmatrix} 0 \\ 1 \end{pmatrix} \) represents the source aimed at F.

Now there is some information assumed in this simple 2D vector, e.g., that the source is turned on and that the detectors are in fact responding to this particular, active source. We next introduce beam splitter A between the source and detectors, which changes the 2D vector to
Next we introduce the pair of mirrors B and C between A and the detectors, but this does nothing to the 2D vector, since \(\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \). Finally, we introduce beam splitter D between the mirrors and detectors, giving \(\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \).

According to the adynamical global constraint model, the fundamental explanation for the MZI interference (E triggers but not F) has nothing to do with the dynamics of particles or fields. Rather, the functioning MZI and its outcomes are viewed as one system, explained in its entirety via acausal global constraints (which will be given in terms of graphical boundary operators below). As explained in the previous section, accounts utilizing both fields and future boundary conditions to obtain wave-like behavior make for a potentially unstable combination because one must presuppose what one is trying to explain—interference in this case. We believe the problem stems from assuming that the pattern of explanation is still fundamentally dynamical despite its time-symmetry. Wharton (2010) seems to assume this as well, in spite of the fact that he, like us, utilizes the path integral or Lagrangian approach. But if you take seriously the idea that the path integral-type explanation is the most fundamental, it opens up the possibility of fundamental explanation via acausal global constraints, i.e. an adynamical interpretation of the Lagrangian approach. On this approach, the fundamental explanation of the interference pattern is adynamical and acausal; it is a principle or rule underlying the spatiotemporal configuration of the experiment as whole that determines the outcomes, not a dynamical history. Hence we are advocating principle explanation as fundamental, rejecting the claim that fundamental explanation in physics is always ultimately constructive or dynamical (Brown 2005).

Principle explanation is most clearly understood by considering examples from special relativity (SR), such as the well-known phenomena of length contraction and time dilation.
Viewed as a principle theory, SR introduces, as Jeffrey Bub puts it, “abstract structural constraints that events are held to satisfy” (Hughes 1989, 129). The crucial point here is that causality and dynamical laws do not figure into the analysis of length contraction. The two principles at work in SR that constrain dynamics are the relativity principle and the light principle. Principle explanation has some precedent in the interpretation of quantum theory (see, for example, the discussion in Hughes 1989, 256 ff.), but the dynamical bias is hard to shake. However, unlike the case of SR, we seek a global self-consistency principle or rule that is *fundamental*—i.e. that underlies the dynamical or constructive understanding of QM. We call this rule the self-consistency criterion (SCC), since it correlates the properties of space, time and matter on a graph in the spirit of general relativity (GR).

In GR, momentum, force and energy all depend on spatiotemporal measurements (tacit or explicit), so the stress-energy tensor cannot be constructed without tacit or explicit knowledge of the spacetime metric (technically, the stress-energy tensor can be written as the functional derivative of the matter-energy Lagrangian with respect to the metric). But, if one wants a *dynamic* spacetime (in the parlance of GR), the spacetime metric must depend on the matter-energy distribution in spacetime. GR solves this problem by demanding the stress-energy tensor be *consistent* with the spacetime metric per Einstein’s equations. Likewise, our fundamental rule for the construction of the Lagrangian difference matrix \bar{K} and source vector \bar{J}, which are ultimately responsible for interference, is based on the self-consistent construction of a relational graph, i.e., graphical links and their properties to include the spacetime metric. A classical analogy is Regge calculus (Misner et al., 1973, 1166), a discrete graphical approximation to GR. In Regge calculus, the spacetime manifold is replaced by a lattice geometry where each cell is Minkowskian (flat). Curvature is represented by “deficit angles” (Fig. 2) about any plane orthogonal to a “hinge” (triangular side to a tetrahedron, which is a side of a simplex). The
Hilbert action for a 4D vacuum lattice is \(I_R = \frac{1}{8\pi} \sum_{\sigma_i \in L} \varepsilon_i A_i \), where \(\sigma_i \) is a triangular hinge in the lattice \(L \), \(A_i \) is the area of \(\sigma_i \) and \(\varepsilon_i \) is the deficit angle associated with \(\sigma_i \). The counterpart to Einstein’s equations is then obtained by demanding \(\frac{\delta I_R}{\delta \ell^2_j} = 0 \), where \(\ell^2_j \) is the squared length of the \(j^{th} \) lattice edge, i.e., the metric. To obtain equations in the presence of matter-energy, one simply adds the appropriate term \(I_{M-E} \) to \(I_R \) and carries out the variation as before to obtain

\[
\frac{\delta I_R}{\delta \ell^2_j} = -\frac{\delta I_{M-E}}{\delta \ell^2_j}.
\]

One finds the stress-energy tensor is associated with lattice edges, just as the metric, and Regge’s equations are to be satisfied for any particular choice of the two tensors on the lattice. Thus, Regge’s equations are, like Einstein’s equations, a self-consistency criterion for the stress-energy tensor and metric. Likewise, we are proposing that the explanation of interference resides not in dynamical wave-like entities, but in a global self-consistency criterion.

In what follows we will present a candidate for the SCC in a discrete graphical formalism fundamental to both QM and QFT. In order to build up the graphs that yield the right probabilities, we will indeed presuppose the entire spatiotemporal profile of the MZI experiment to include outcomes, i.e., we use the path integral approach. The fundamental element in our adynamical explanation is the relation. To picture what we mean by relations consider a graphical depiction of connected worldlines, i.e., sets of vertical (time-like) links (\(e_1, e_3, e_5, e_6 \) in Fig. 3) connected by horizontal (space-like) links (\(e_4, e_2, e_7 \) in Fig. 3). Now, assign properties such as mass, energy, momentum, spatiotemporal length, etc., to each link. These property-endowed links represent relations and the graph represents trans-temporal objects (TTOs) involved in some process. Of course, a complete graphical depiction of the TTOs involved in the MZI would be prohibitively and unnecessarily complex. In addition, there are many different distributions of relations possible for a particular TTO, just as there are many different
distributions of molecular velocities for a gas at some given temperature. Since we don’t know exactly the relational composition of the TTOs, our predictions concerning their relational compositions are necessarily probabilistic.

With this correspondence in mind, we understand that \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \) represents an active source directed at one of a pair of corresponding detectors, but more importantly it also represents the fact that the active nature of the source has established a source-E relation responsible for E clicks. When one introduces beam splitter A, one applies the matrix \(\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \) to \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \) to obtain \(\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \), representing the fact that the active nature of the source has established a source-A relation which has subsequently established an A-E relation and an A-F relation of equal weight. The mirrors only serve to allow for the introduction of beam splitter D, which now creates the following set of relations: source-A, then A-D (upper left path) and A-D (lower right path), then D-E. This is represented by the sequence \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix} \). But why is the final relation D-E and not D-F? To answer this question in complete formal detail exceeds the scope of this paper. However, we can briefly summarize the approach so as to convey some appreciation for the relevant result.

In order to compute the transition amplitude \(Z \) for the two-source graph (as depicted in Fig. 3, but with N nodes), one must solve the eigenvalue problem for the matrix \(\tilde{\tilde{K}} \) constructed from boundary operators on the graph, i.e., \(\tilde{\tilde{K}} = \partial_1 \partial_1^T \) where
is the \(\partial_i \) boundary operator for the graph in Figure 3. \(\bar{\bar{K}} \) is essentially the difference matrix in the Wick-rotated discrete action of the free field of QFT, i.e., that for coupled harmonic oscillators. Also required for computing \(Z \) are the projections of the source vector \(\bar{J} \) onto the eigenvectors of \(\bar{\bar{K}} \). \(\bar{J} \) is given by the \(\partial_i \) boundary operator on the vector of graphical links, i.e.,

\[
\bar{J} = \partial_i \bar{e},
\]

which automatically makes \(\bar{J} \) divergence-free, i.e., \(\sum_i J_i = 0 \). Solving the eigenvalue problem for \(\bar{\bar{K}} \) and projecting \(\bar{J} \) onto the eigenvectors one obtains the probability amplitude for a direct source-to-source interaction. This is the graphical counterpart to the free field propagator in QFT, but in this application to QM we’re coupling sources (oscillators) that are widely separated in space, as between source and A in the MZI, rather than adjacent, as in the continuous sense of QFT. Combining two graphs (Fig. 4) then serves to model the interference phenomenon. Adding the respective probability amplitudes and squaring (Born rule) shows that interference is given by the difference in the square of spatial links, i.e., the phase goes as

\[
e^2_x - \bar{e}_x^2.
\]

That is to say, the square of spatial links corresponds to spatial distance and the interference pattern is associated with different spatial path lengths between sources, just as in geometric optics. Of course, in this picture, the explanation of interference doesn’t involve the cancellation or enhancement of wave-like motion. Rather, \(Z \) simply provides a continuous probability between 0 and 1 for each detector as you change the MZI spatial lengths by virtue of the phase difference between sources obtained from \(\bar{\bar{K}} \) and \(\bar{J} \). So, we assumed an outcome
location (along with the MZI configuration) to build the graph, but that outcome (squared) could be anything from 0 to 1, so we did not assume an interference pattern. Rather, as in Regge calculus, the values of spacetime length and energy-momentum associated with a given graphical link obtain by virtue of the fact that they satisfy the relevant global self-consistency equation, such as Regge’s equations.

For example, suppose in the context of Regge calculus, you asked, “Why does link X have 5.00 kg\(\cdot\)m/s of momentum on it?” The answer would be, “Because 5.00 kg\(\cdot\)m/s of momentum on link X satisfies Regge’s equations when used in conjunction with the values given on all the other links for the stress-energy tensor and spacetime metric.” Nothing “makes” the link “acquire” a momentum of 5.00 kg\(\cdot\)m/s in a dynamical sense. The reason it has that value is per its role in the global solution of Regge’s equations corresponding to the process being modeled. In our case, the process being modeled is an MZI in a particular configuration (specific path lengths on arms) with a particular outcome (E click). We get a probability for that graph via adynamical global constraints.

So, what are our counterparts to Regge’s equations for \(\vec{K}\) and \(\vec{J}\)? Omitting the gory details, the definitions of \(\vec{K}\) and \(\vec{J}\) above yield \(\vec{K}\vec{v} = \vec{J}\) where \(\vec{v}\) is the vector of graphical nodes. This relationship between \(\vec{K}\) and \(\vec{J}\) follows tautologically per the boundary of a boundary principle (\(\partial\partial = 0\)), as do Maxwell’s and Einstein’s equations (Misner et al. 1973, 772). Given that \(\vec{\partial} = \partial_i \partial_i^T\) yields the difference matrix in the discrete action for coupled harmonic oscillators, \(\vec{J} = \partial_i e\) guarantees the source vector is divergence-free and resides in the row space of \(\vec{K}\), and \(\vec{K}\vec{v} = \vec{J}\) follows from the same topological principle underlying Maxwell’s and Einstein’s equations, we posit that \(\vec{K}\vec{v} = \vec{J}\) is the fundamental rule (SCC) responsible for the self-consistent construct of \(\vec{K}\) and \(\vec{J}\), i.e., our counterpart to Regge’s equations:
1. \(\vec{K} \) and \(\vec{J} \), whence the transition amplitude \(Z \), must satisfy the SCC, \(\vec{K} \vec{v} = \vec{J} \).

2. \(Z \) gives the probability for a particular outcome in a particular experiment.

3. \(\vec{K} \cdot \vec{Q}_o = \vec{J} \) where \(\vec{Q}_o \) represents the most probable values of the experimental outcomes.

4. Steps 2 and 3 are approximated in the continuum by quantum and classical field theory, respectively.

5. Conclusion

In utilizing discrete path integrals over graphs constrained by the SCC, we have shown that it is possible in principle to explain interference adynamically with spatiotemporal global constraints that underlie QM and QFT clothed in their standard dynamical formulation. Whatever the merits or demerits of our specific proposal, we would urge others willing to take time-symmetric accounts of QM seriously to start thinking about the new explanatory space opened up by this perspective. While integral calculus or Lagrangian methods have been with us for some time, very few have spent much time in their interpretation. As Healey says, “While many contemporary physics texts present the path-integral quantization of gauge field theories, and the mathematics of this technique have been intensively studied, I know of no sustained critical discussions of its conceptual foundations” (Healey, 141, 2007). In this paper we have explored an adynamical interpretation of the path-integral approach in its discrete form. In so doing, we also hope to have shown that an epistemic interpretation of the wavefunction is a live option with many explanatory virtues.
Figure 1

Figure 2

Figure 42.1.
A 2-geometry with continuously varying curvature can be approximated arbitrarily closely by a polyhedron built of triangles, provided only that the number of triangles is made sufficiently great and the size of each sufficiently small. The geometry in each triangle is Euclidean. The curvature of the surface shows up in the amount of deficit angle at each vertex (portion $ABCD$ of polyhedron laid out above on a flat surface).

References

