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Interference and Explanation in Time-Symmetric Quantum Mechanics 

 

Abstract 

There has been considerable interest recently in time-symmetric versions of quantum mechanics; 

such theories are not subject to Bell’s theorem, and hence reopen the possibility of taking an 

epistemic attitude to the wavefunction. However, explaining interference phenomena remains a 

challenge for wavefunction-epistemic quantum mechanics. In this paper we consider the options 

for a time-symmetric explanation of interference via waves and via particles, discuss their 

problems, and propose a third explanatory strategy via acausal global constraints. 

 

1. Wavefunction Epistemicism 

The quantum wavefunction naturally suggests an epistemic interpretation. The intensity (squared 

amplitude) of the wavefunction yields the probabilities of obtaining the various possible 

measurement outcomes on observation. During observation, but not otherwise, the wavefunction 

(apparently) collapses discontinuously to an eigenstate corresponding to the observed outcome. 

These features are straightforwardly explained under an epistemic approach; the wavefunction is 

regarded as a statistical summary of our knowledge of the underlying local physical properties of 

the particles involved, so its connection to the probabilities of observed outcomes is built-in, and 

wavefunction collapse on observation simply reflects our coming to know the relevant 

measurement outcome. 

The twin mysteries of QM are non-separability and interference, and both seem to stand 

in the way of an epistemic interpretation of the wavefunction, non-separability because of Bell's 

Theorem, and interference because wavefunction realism is apparently required by our causal 

explanations. For these reasons, the epistemic interpretation is widely regarded to be a non-
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starter; hence the proliferation of realist approaches that take the wavefunction to be a physical 

entity, such as Everett's relative-state approach, Bohm's pilot-wave approach and the GRW 

collapse approach. 

Recently, however, some progress has been made in rehabilitating wavefunction 

epistemicism by appealing to time-symmetric, retrocausal or atemporal explanation. In 

particular, a time-symmetric interpretation of QM has been shown to provide a plausible way of 

exploiting a loophole in Bell's theorem (Price 1996). If the states of the particles on emission can 

depend on the setting of the detectors they will later encounter, then Bell's theorem does not go 

through, and hence can be no barrier to interpreting the wavefunction as a statistical summary of 

our knowledge of the underlying properties of the particles. 

So Bell’s theorem does not stand in the way of wavefunction epistemicism. But what 

about interference, the second mystery? According to wavefunction-realist approaches the two 

mysteries are connected, since both non-separability and interference are explained in terms of 

superpositions of distinct wavefunction terms. But wavefunction-epistemic approaches cannot 

take this route, since superpositions simply reflect an observer’s knowledge, and so cannot 

ground a physical explanation of either phenomenon. Indeed, wavefunction-epistemic 

explanations of EPR-Bell correlations make no mention of superposition, but simply appeal to 

the properties of the particles, the measurement settings, and time-symmetric causation. Without 

superposition, interference phenomena become problematic, since interference is prima facie a 

physical interaction between the various superposed branches. In what follows, we explore the 

prospects for accommodating interference within time-symmetric, wavefunction-epistemic 

quantum mechanics. 

 

2. Explaining Interference via Fields 
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As a simple example of interference, consider a Mach-Zehnder interferometer (MZI), as shown 

in Fig. 1. The standard wavefunction-realist analysis is as follows: The wavefunction intensity 

associated with an incoming particle is split into two equal components by beam-splitter A, and 

half the intensity follows each path through the interferometer, ABD and ACD. The two 

components of the wavefunction intersect at beam-splitter D; if the two components are exactly 

in phase, then all the intensity exits the interferometer through path E (because the waves along 

path F exactly cancel out), and if they are exactly out of phase then all the intensity exits though 

path F (because the waves along path E exactly cancel out). On the other hand, if all the 

wavefunction intensity takes path ABD (because the beam-splitter at A is removed), then no 

interference occurs at D; equal wavefunction intensities emerge along paths E and F.  

Initially, then, interference seems to rule out an epistemic approach, since the explanation 

of the phenomena depends on real waves travelling both paths and physically interacting at D. 

The time-symmetric approach is essentially a ―hidden variable‖ approach, in that the 

wavefunction describes our state of knowledge concerning the actual underlying physical state of 

the system. If the intensity on each branch is 1/2, this means that there is a 50% epistemic 

probability that the actual physical state is a particle taking path ABD and a 50% probability that 

it is a particle taking path ACD. But if the actual physical system takes one path rather than the 

other, there is no physical interaction between entities taking the two paths at D, and the 

explanation of interference is lost. 

But it is important to note that the time-symmetric approach does not require that the 

―hidden variables‖ take the form of particle properties. Indeed, several proponents of the time-

symmetric approach take the wavefunction to describe our knowledge of fields rather than our 

knowledge of particles, and they do so precisely so as to give a physical account of interference. 

Consider, for example, Cramer's (1986) transactional interpretation. According to this approach, 
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the wavefunction should not be regarded as a physically real field inhabiting a 3N-dimensional 

configuration space; rather, what is real is a transaction, which is a field in ordinary 3-

dimensional space. Nevertheless, one can as a matter of convenience take the wavefunction as a 

summary of our knowledge of the transactions at a time, yielding the probability that each 

possible transaction is actual via the Born rule. 

According to the transactional interpretation, in non-interference situations a transaction 

forms along a determinate spatial trajectory. For example, suppose the beam-splitter at A is 

removed from the MZI. Then two possible transactions may form, one along ABDE and one 

along ABDF, and the traditional wavefunction intensities at E and F reflect the epistemic 

probability that each of these transactions is actual. However, in interference situations, a 

transaction forms along a disjoint trajectory. With the beam-splitter at A in place, and with path-

lengths ABD and ACD chosen appropriately, a single transaction forms between A and E, split 

between paths ABDE and ACDE. This single transaction consists of a classical field that takes 

both paths through the interferometer, and hence the physical interaction between the field 

amplitudes arriving at D from B and from C can explain the interference effect. 

Wharton (2010) takes a related approach, in that he also takes the quantum wavefunction 

to be of merely epistemic significance, where the true underlying state of a quantum system is 

characterized in terms of a classical field evolving between an initial boundary condition 

(preparation) and a final boundary condition (detection). Wharton takes a Feynman-path 

approach to the field between the two boundaries, interpreting it as a sum over all possible paths. 

As in the transactional approach, for the MZI without interference (beam-splitter at A removed) 

the field forms either along path ABDE or along ABDF, and in the interference case (beam-

splitter present) the field forms along both paths ABDE and ACDE simultaneously. 
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The transactional interpretation has been criticized on a number of fronts; in particular, 

since transactions form between particle emission events and particle absorption events, the 

theory has difficulty accommodating situations where the absorbers do not occupy fixed space-

time points, but move in response to the actual path taken by the transaction (Maudlin 1994, 

200). Even putting aside this case, identifying the ends of a transaction with particle emission 

and absorption points is problematic. The assumption seems to be that all measurement outcomes 

are particle absorptions, since it is particle absorptions that are made determinate by the 

transactional approach. But this is far from obvious. Indeed, elementary QM (with a fixed 

number of particles) necessarily models measurement without particle absorption, typically as 

the correlation between a microscopic system and a macroscopic pointer. There is no reason why 

a transaction should make such a measurement event determinate, rather than being a 

superposition of classical waves passing through several distinct measurement outcomes. 

Perhaps Wharton's approach can be more flexible in this regard; perhaps it need not take 

particle destruction as the only future constraint on the classical field. But note that a dilemma 

threatens. If the future constraint is tied to a particular kind of physical process, then we need 

some reason to think that all measurements will be instances of this process, otherwise 

measurement outcomes need not be made determinate. But if the future constraint is not tied to a 

particular kind of physical process, but is simply whatever constitutes a measurement, then the 

measurement problem reemerges. That is, if all that distinguishes the future constraint on the 

field from other physical processes is that it constitutes a measurement, then stipulating that the 

field converges to this point is arbitrary, since measurements are just physical processes too. 

The basic worry here is that the field-based time-symmetric approaches are unstable 

hybrids. On the one hand, they seek to interpret the wavefunction epistemically rather than 

ontically, such that preparations and measurements are merely points at which we have a 
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particularly detailed knowledge of the quantum system. On the other, they retain the field-like 

behavior of the wavefunction at the ontic level, with a wave that spreads out from the preparation 

point and converges to the measurement point. Even if the above dilemma is not convincing, 

there is a feeling of redundancy about it; as Price has remarked, the time-symmetric approach 

promises to restore discrete trajectories to QM, so to back away from discrete trajectories at this 

point ―misses the true potential‖ of the approach (1996, 283). 

 

3. Explaining Interference via Particles 

Of course, the choice of fields rather than discrete trajectories is not unmotivated, but is 

motivated by the desire to explain interference. What can a discrete approach do here? It is worth 

noting that the heart of the time-symmetric approach is that a system can bear the traces of future 

interactions, just as it can bear the traces of past interactions. In particular, the state of the system 

can depend on where and how it will be detected. In the case of the MZI, then, it is no mystery 

that, for suitable path-lengths, the particles always go to E, since their ending up at E is just as 

much a constraint on the particles as their starting out at A. That is, what one might typically take 

as the explanandum in the interference case is taken as part of the explanans in a time-symmetric 

treatment. Indeed, this brings to the fore the sense in which the transactional and Wharton 

approaches seem to incorporate a redundancy. Both of them presuppose in their analysis that 

there is a future constraint on the classical field as well as a past constraint, and the future 

constraint is absorption at E. But then in what sense does absorption at E call for an explanation, 

if it is one of the boundary conditions? And if it does not call for an explanation, why insist that 

the underlying reality consists of fields just so as to provide such an explanation? 

The obvious answer is that absorption at E calls for an explanation in the sense that 

simply taking it as a boundary condition makes the explanation of interference trivial. Why is it 
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that for this choice of path-lengths all the particles go to E? It hardly seems satisfactory to reply 

―because the particles bear traces of being absorbed at E‖; this just presupposes what we are 

trying to explain. However, explanation is a tricky matter; perhaps the explanation just looks 

trivial because we are used to explanations that proceed from the past to the future, so that taking 

a future state as an explanans seems to our untutored intuitions like cheating. Indeed, as long as 

the detection point and the emission point do not constitute all the degrees of freedom for the 

system, then the potential for a substantive explanation of the remaining degrees of freedom 

remains. 

To put the same point in a slightly different way, perhaps the accusation is that an 

explanation that takes the end-point as given is vacuous since any phenomenon could be 

―explained‖ in this way, so nothing is really explained. But such a complaint would be 

premature, since we have as yet given no laws or mechanisms for a discrete time-symmetric 

approach. The mere form of an explanation is typically vacuous; it is only the laws or 

mechanisms that constrain the connections between the explanans and explanandum that give the 

explanation content. Indeed, one might accuse explanations in classical physics that start with the 

initial state of a system of being vacuous, since anything can be explained in this way. Ironically, 

though, not everything can be explained from initial conditions; this is precisely the lesson that 

Price draws from EPR-Bell experiments. Hence one needs to broaden the explanans to include 

some final conditions as well as some initial conditions. One certainly hopes that doing so means 

every phenomenon can potentially be explained, given suitable laws or mechanisms; that is 

precisely the point. 

Still, without a concrete candidate for a law or mechanism that can constrain discrete 

particle trajectories in the required way, the worry that the explanation of interference will 

remain trivial cannot be fully put to rest. So perhaps there is a third alternative in the time-
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symmetric camp that can avoid the problems facing both the alternatives canvassed so far. 

There is a sense in which neither the field-based nor the trajectory-based approach fully exploits 

the explanatory resources that are made available by the time-symmetric program, since both still 

explain phenomena primarily via possessed physical properties that are traced through time by 

the underlying ontology, whether that ontology is discrete or continuous. They also appeal to the 

initial and final boundary conditions, but the constraints imposed by these conditions are always 

mediated by the dynamical properties of the system. Perhaps more insight—and deeper 

explanations—can be had by concentrating on the global consistency conditions imposed by 

these constraints directly, where ―global‖ is spatiotemporal, i.e., the experiment from initiation to 

termination (measurement outcomes). The hope is that by explaining the behavior of a system in 

a global, adynamical or timeless fashion, the explanation of interference can avoid both the 

problems of appealing to dynamic interaction between fields and the apparent triviality of 

explanations based on particle trajectories. 

 

4. Explaining Interference via Acausal Global Constraints 

Herein we will provide an explanation of MZI interference utilizing acausal global constraints. 

Whether this is anything more than a toy-model remains to be seen, but hopefully it provides a 

proof in principle that such an explanation is possible. Let us begin with the standard QM 

description of the MZI. One starts with a directed source and a pair of detectors E and F (see Fig. 

1); vector  represents the source aimed at E and vector 

 

represents the source aimed at F. 

Now there is some information assumed in this simple 2D vector, e.g., that the source is turned 

on and that the detectors are in fact responding to this particular, active source. We next 

introduce beam splitter A between the source and detectors, which changes the 2D vector to 
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. Next we introduce the pair of mirrors B and C between A and the 

detectors, but this does nothing to the 2D vector, since  . Finally, we 

introduce beam splitter D between the mirrors and detectors, giving .    

According to the adynamical global constraint model, the fundamental explanation for 

the MZI interference (E triggers but not F) has nothing to do with the dynamics of particles or 

fields. Rather, the functioning MZI and its outcomes are viewed as one system, explained in its 

entirety via acausal global constraints (which will be given in terms of graphical boundary 

operators below). As explained in the previous section, accounts utilizing both fields and future 

boundary conditions to obtain wave-like behavior make for a potentially unstable combination 

because one must presuppose what one is trying to explain—interference in this case. We believe 

the problem stems from assuming that the pattern of explanation is still fundamentally dynamical 

despite its time-symmetry. Wharton (2010) seems to assume this as well, in spite of the fact that 

he, like us, utilizes the path integral or Lagrangian approach. But if you take seriously the idea 

that the path integral-type explanation is the most fundamental, it opens up the possibility of 

fundamental explanation via acausal global constraints, i.e. an adynamical interpretation of the 

Lagrangian approach. On this approach, the fundamental explanation of the interference pattern 

is adynamical and acausal; it is a principle or rule underlying the spatiotemporal configuration of 

the experiment as whole that determines the outcomes, not a dynamical history. Hence we are 

advocating principle explanation as fundamental, rejecting the claim that fundamental 

explanation in physics is always ultimately constructive or dynamical (Brown 2005).  

Principle explanation is most clearly understood by considering examples from special 

relativity (SR), such as the well-known phenomena of length contraction and time dilation. 
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Viewed as a principle theory, SR introduces, as Jeffrey Bub puts it, ―abstract structural 

constraints that events are held to satisfy‖ (Hughes 1989, 129).  The crucial point here is that 

causality and dynamical laws do not figure into the analysis of length contraction. The two 

principles at work in SR that constrain dynamics are the relativity principle and the light 

principle. Principle explanation has some precedent in the interpretation of quantum theory (see, 

for example, the discussion in Hughes 1989, 256 ff.), but the dynamical bias is hard to shake. 

However, unlike the case of SR, we seek a global self-consistency principle or rule that is 

fundamental—i.e. that underlies the dynamical or constructive understanding of QM. We call 

this rule the self-consistency criterion (SCC), since it correlates the properties of space, time and 

matter on a graph in the spirit of general relativity (GR).  

In GR, momentum, force and energy all depend on spatiotemporal measurements (tacit or 

explicit), so the stress-energy tensor cannot be constructed without tacit or explicit knowledge of 

the spacetime metric (technically, the stress-energy tensor can be written as the functional 

derivative of the matter-energy Lagrangian with respect to the metric). But, if one wants a 

dynamic spacetime (in the parlance of GR), the spacetime metric must depend on the matter-

energy distribution in spacetime. GR solves this problem by demanding the stress-energy tensor 

be consistent with the spacetime metric per Einstein’s equations. Likewise, our fundamental rule 

for the construction of the Lagrangian difference matrix  and source vector , which are 

ultimately responsible for interference, is based on the self-consistent construction of a relational 

graph, i.e., graphical links and their properties to include the spacetime metric. A classical 

analogy is Regge calculus (Misner et al., 1973, 1166), a discrete graphical approximation to GR.  

In Regge calculus, the spacetime manifold is replaced by a lattice geometry where each cell is 

Minkowskian (flat). Curvature is represented by ―deficit angles‖ (Fig.  2) about any plane 

orthogonal to a ―hinge‖ (triangular side to a tetrahedron, which is a side of a simplex). The 

 K
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Hilbert action for a 4D vacuum lattice is  where σi is a triangular hinge in the 

lattice L, Ai is the area of σi and εi is the deficit angle associated with σi. The counterpart to 

Einstein’s equations is then obtained by demanding , where ℓj
2
 is the squared length of 

the j
th
 lattice edge, i.e., the metric. To obtain equations in the presence of matter-energy, one 

simply adds the appropriate term IM-E to IR and carries out the variation as before to obtain

. One finds the stress-energy tensor is associated with lattice edges, just as the 

metric, and Regge’s equations are to be satisfied for any particular choice of the two tensors on 

the lattice. Thus, Regge’s equations are, like Einstein’s equations, a self-consistency criterion for 

the stress-energy tensor and metric. Likewise, we are proposing that the explanation of 

interference resides not in dynamical wave-like entities, but in a global self-consistency criterion.  

In what follows we will present a candidate for the SCC in a discrete graphical formalism 

fundamental to both QM and QFT.  In order to build up the graphs that yield the right 

probabilities, we will indeed presuppose the entire spatiotemporal profile of the MZI experiment 

to include outcomes, i.e., we use the path integral approach.  The fundamental element in our 

adynamical explanation is the relation. To picture what we mean by relations consider a 

graphical depiction of connected worldlines, i.e., sets of vertical (time-like) links (e1, e3, e5, e6  in 

Fig. 3) connected by horizontal (space-like) links (e4, e2, e7 in Fig. 3). Now, assign properties 

such as mass, energy, momentum, spatiotemporal length, etc., to each link. These property-

endowed links represent relations and the graph represents trans-temporal objects (TTOs) 

involved in some process. Of course, a complete graphical depiction of the TTOs involved in the 

MZI would be prohibitively and unnecessarily complex. In addition, there are many different 

distributions of relations possible for a particular TTO, just as there are many different 
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distributions of molecular velocities for a gas at some given temperature. Since we don’t know 

exactly the relational composition of the TTOs, our predictions concerning their relational 

compositions are necessarily probabilistic. 

With this correspondence in mind, we understand that  represents an active source 

directed at one of a pair of corresponding detectors, but more importantly it also represents the 

fact that the active nature of the source has established a source-E relation responsible for E 

clicks. When one introduces beam splitter A, one applies the matrix  to  to obtain

, representing the fact that the active nature of the source has established a source-A 

relation which has subsequently established an A-E relation and an A-F relation of equal weight. 

The mirrors only serve to allow for the introduction of beam splitter D, which now creates the 

following set of relations: source-A, then A-D (upper left path) and A-D (lower right path), then 

D-E. This is represented by the sequence . But why is the final relation D-E and 

not D-F? To answer this question in complete formal detail exceeds the scope of this paper. 

However, we can briefly summarize the approach so as to convey some appreciation for the 

relevant result.  

In order to compute the transition amplitude Z for the two-source graph (as depicted in 

Fig. 3, but with N nodes), one must solve the eigenvalue problem for the matrix  constructed 

from boundary operators on the graph, i.e.,  where  
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is the  boundary operator for the graph in Figure 3.  is essentially the difference matrix in 

the Wick-rotated discrete action of the free field of QFT, i.e., that for coupled harmonic 

oscillators. Also required for computing Z are the projections of the source vector onto the 

eigenvectors of . is given by the  boundary operator on the vector of graphical links, i.e.,

, which automatically makes  divergence-free, i.e., . Solving the eigenvalue 

problem for  and projecting onto the eigenvectors one obtains the probability amplitude for a 

direct source-to-source interaction. This is the graphical counterpart to the free field propagator 

in QFT, but in this application to QM we’re coupling sources (oscillators) that are widely 

separated in space, as between source and A in the MZI, rather than adjacent, as in the 

continuous sense of QFT. Combining two graphs (Fig. 4) then serves to model the interference 

phenomenon. Adding the respective probability amplitudes and squaring (Born rule) shows that 

interference is given by the difference in the square of spatial links, i.e., the phase goes as

. That is to say, the square of spatial links corresponds to spatial distance and the 

interference pattern is associated with different spatial path lengths between sources, just as in 

geometric optics. Of course, in this picture, the explanation of interference doesn’t involve the 

cancellation or enhancement of wave-like motion. Rather, Z simply provides a continuous 

probability between 0 and 1 for each detector as you change the MZI spatial lengths by virtue of 

the phase difference between sources obtained from  and . So, we assumed an outcome 
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location (along with the MZI configuration) to build the graph, but that outcome (squared) 

could be anything from 0 to 1, so we did not assume an interference pattern. Rather, as in Regge 

calculus, the values of spacetime length and energy-momentum associated with a given graphical 

link obtain by virtue of the fact that they satisfy the relevant global self-consistency equation, 

such as Regge’s equations.  

For example, suppose in the context of Regge calculus, you asked, ―Why does link X 

have 5.00 kg
.
m/s of momentum on it?‖ The answer would be, ―Because 5.00 kg

.
m/s of 

momentum on link X satisfies Regge’s equations when used in conjunction with the values given 

on all the other links for the stress-energy tensor and spacetime metric.‖ Nothing ―makes‖ the 

link ―acquire‖ a momentum of 5.00 kg
.
m/s in a dynamical sense. The reason it has that value is 

per its role in the global solution of Regge’s equations corresponding to the process being 

modeled. In our case, the process being modeled is an MZI in a particular configuration (specific 

path lengths on arms) with a particular outcome (E click). We get a probability for that graph via 

adynamical global constraints.  

So, what are our counterparts to Regge’s equations for  and ? Omitting the gory 

details, the definitions of  and  above yield  where is the vector of graphical nodes. 

This relationship between  and  follows tautologically per the boundary of a boundary 

principle (∂∂ = 0), as do Maxwell’s and Einstein’s equations (Misner et al. 1973, 772). Given 

that  yields the difference matrix in the discrete action for coupled harmonic 

oscillators,  guarantees the source vector is divergence-free and resides in the row space 

of , and follows from the same topological principle underlying Maxwell’s and 

Einstein’s equations, we posit that  is the fundamental rule (SCC) responsible for the 

self-consistent construct of  and , i.e., our counterpart to Regge’s equations: 
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1.  and , whence the transition amplitude Z, must satisfy the SCC, . 

2. Z gives the probability for a particular outcome in a particular experiment.  

3. where  represents the most probable values of the experimental outcomes. 

4. Steps 2 and 3 are approximated in the continuum by quantum and classical field theory, 

respectively. 

 

5. Conclusion 

In utilizing discrete path integrals over graphs constrained by the SCC, we have shown that it is 

possible in principle to explain interference adynamically with spatiotemporal global constraints 

that underlie QM and QFT clothed in their standard dynamical formulation. Whatever the merits 

or demerits of our specific proposal, we would urge others willing to take time-symmetric 

accounts of QM seriously to start thinking about the new explanatory space opened up by this 

perspective. While integral calculus or Lagrangian methods have been with us for some time, 

very few have spent much time in their interpretation. As Healey says, ―While many 

contemporary physics texts present the path-integral quantization of gauge field theories, and the 

mathematics of this technique have been intensively studied, I know of no sustained critical 

discussions of its conceptual foundations‖ (Healey, 141, 2007). In this paper we have explored 

an adynamical interpretation of the path-integral approach in its discrete form. In so doing, we 

also hope to have shown that an epistemic interpretation of the wavefunction is a live option with 

many explanatory virtues. 
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Figure 1 

 

 

 

 

 

 

Figure 2 

 

Reproduced from Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman, San 

Francisco (1973), p. 1168. 
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Figure 3 

 

 

 

Figure 4 

 

 

 

 

ex 

 

ex 

 
eT 

 

xe~

 

xe~

 

eT 

 

eT 

 

ex 

 

eT 

 

eT 

 

xe~
 

 

eT 

 

e3 

 

6 

5 

4 

3 

2 

1 

e7 

 

e6 

 

e5 

e2 

e1 

e4 



 18 

References 

Brown, H. R. (2005) Physical Relativity: Space-time Structure from a Dynamical Perspective, 

Oxford University Press. 

Cramer, J. G. (1986), ―The transactional interpretation of quantum mechanics‖, Reviews of 

Modern Physics 58: 647–687. 

Healey, R. (2007). Gauging What’s Real: The Conceptual Foundations of Gauge Theories. 

Oxford University Press.  

Hughes, R. (1989). The Structure and Interpretation of Quantum Mechanics. Harvard University 

Press. 

Maudlin, T. (1994), Quantum Non-Locality and Relativity. Blackwell, Oxford. 

Misner, C.W., Thorne, K.S., Wheeler, J.A. (1973), Gravitation. W.H. Freeman, San Francisco. 

Price, H. (1996), Time’s Arrow and Archimedes’ Point. Oxford University Press. 

Wharton, K. (2010), ―A novel interpretation of the Klein-Gordon equation‖, Foundations of 

Physics 40: 313–332. 

 

 


